Abstract

Compared to traditional labyrinth seals, large-diameter (about 24 in or 609.6 mm) film-riding face seals are worth 0.55–0.65% points efficiency for utility-scale supercritical carbon dioxide (sCO2) turbines. Conventional dry gas seals (DGS) that rely on aerodynamic spiral grooves cannot be used at such large diameters due to manufacturability limitations and mechanical deformations. Hybrid film-riding face seals are excellent compromise candidates that can operate at large diameters with slightly increased albeit leakier films. This paper presents the development and test data for a hybrid face seal developed for the utility-scale sCO2 turbine application. A high-level overview of the seal design considerations is presented followed by test data on three seals—a small-size seal (5.7 in or 144.8 mm diameter), an intermediate-size seal (14 in or 355.6 mm diameter), and two full-size seals (24 in or 609.6 mm diameter) tested over a range of pressures and temperatures with both air and CO2 as the working fluid. This paper presents nondimensional seal film thickness and seal leakage (effective clearance) data as a function of the pressure ratios, speed, and temperature. The film thickness measurements presented in this paper agree well with the computational fluid dynamics (CFD)-based film thickness predictions. The measured seal effective clearance for the seals was around 0.001 in (0.0254 mm) effective clearance, which is better than published data on aerostatic face seals and less risky compared to conventional DGS. Rotating test data across all three length scales presented in this work show successful laboratory-scale seal operation for the newly design hybrid face seals.

References

1.
Moore
,
J. J.
,
Brun
,
K.
,
Evans
,
N.
,
Bueno
,
P.
,
Kalra
,
C.
,
Hofer
,
D.
,
Farineau
,
T.
, et al.,
2014
, “
Development of a High Efficiency Hot Gas Turbo-Expander and Low-Cost Heat Exchangers for Optimized CSP sCO2 Operation
,”
KAPL sCO2 Workshop
,
Niskayuna, NY
.https://www.energy.gov/sites/prod/files/2019/04/f62/CSP%20Summit2019%20SWRI%20Moore%20sCO2-Expander.pdf
2.
Moore
,
J. J.
,
Cich
,
S.
,
Day-Towler
,
M.
,
Hofer
,
D.
, and
Mortzheim
,
J.
,
2018
, “
Testing of a 10 MWe Supercritical CO2 Turbine
,”
Proceedings of 47th Turbomachinery Symposium
,
Turbomachinery Laboratory, Texas A&M Engineering Experiment Station
,
Houston, TX
, Sept. 17–20, pp.
1
18
.https://oaktrust.library.tamu.edu/server/api/core/bitstreams/22edfd88-2117-47fc-98c0-fd66c321f939/content
3.
Kacludis
,
A.
,
Lyons
,
S.
,
Nadav
,
D.
, and
Zdankiewicz
,
E.
,
2012
, “
Waste Heat to Power Applications Using a Supercritical CO2-Based Power Cycle
,”
Proceedings of Power-Gen International
,
Orlando, FL
, Dec. 11–13, pp.
1
10
.https://www.echogen.com/_CE/pagecontent/Documents/Papers/waste-heat-to-power-applications.pdf
4.
Marion
,
J.
,
Kutin
,
M.
,
McClung
,
A.
,
Mortzheim
,
J.
, and
Ames
,
R.
,
2019
, “
The STEP 10 MWe sCO2 Pilot Plant Demonstration
,”
ASME
Paper No. GT2019-91917.10.1115/GT2019-91917
5.
Ertas
,
B.
,
Zierer
,
J.
,
McClung
,
A.
,
Torrey
,
D.
,
Bidkar
,
R. A.
,
Hofer
,
D.
,
Rallabandi
,
V.
, et al.,
2023
, “
Super-Critical Carbon Dioxide Power Cycle for Waste Heat Recovery Utilizing Hermetic Oil-Free Turbomachinery: Cycle and Conceptual Turbomachinery Design
,”
ASME
Paper No. GT2023-104245.10.1115/GT2023-104245
6.
Bidkar
,
R. A.
,
Mann
,
A.
,
Singh
,
R.
,
Sevincer
,
E.
,
Cich
,
S.
,
Day
,
M.
, and
Kulhanek
,
C. D.
, et al.,
2016
, “
Conceptual Designs of 50 MWe and 450 MWe Supercritical CO2 Turbomachinery Trains for Power Generation From Coal. Part 1: Cycle and Turbine
,”
Proceedings of the Fifth International Symposium sCO2 Power Cycles
,
San Antonio, TX
, Mar. 28–31, pp. 1–18, Paper No. 071.https://www.researchgate.net/publication/309478837_Conceptual_Designs_of_50MWe_and_450MWe_Supercritical_CO2_Turbomachinery_Trains_for_Power_Generation_from_Coal_Part_1_Cycle_and_Turbine
7.
Sienicki
,
J. J.
,
Moisseytsev
,
A.
,
Fuller
,
R. L.
,
Wright
,
S. A.
, and
Pickard
,
P. S.
,
2011
, “
Scale Dependencies of Supercritical Carbon Dioxide Brayton Cycle Technologies and the Optimal Size for a Next-Step Supercritical CO2 Cycle Demonstration
,” Proceedings of the sCO2 Power Cycle Symposium,
Boulder, CO
, May
24
25
.
8.
Wright
,
S. A.
,
Conboy
,
T. M.
,
Parma
,
E. J.
,
Lewis
,
T. G.
,
Rochau
,
G. A.
, and
Suo-Anttila
,
A. J.
,
2011
, “
Summary of the Sandia Supercritical CO2 Development Program
,”
sCO2 Power Cycle Symposium
,
Boulder, CO
, Mar. 27–29, pp. 1–14, Paper No. 054.https://www.osti.gov/servlets/purl/1108068#:~:text=The%20CO2%20flows%20out%20of,CO2%20as%20the%20working%20fluid.
9.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
10.
Clementoni
,
E. M.
,
Cox
,
T. L.
, and
Sprague
,
C. P.
,
2014
, “
Startup and Operation of a Supercritical Carbon Dioxide Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
071701
.10.1115/1.4026539
11.
Bidkar
,
R. A.
,
Sevincer
,
E.
,
Wang
,
J.
,
Thatte
,
A. M.
,
Mann
,
A.
,
Peter
,
M.
,
Musgrove
,
G.
,
Allison
,
T.
, and
Moore
,
J.
,
2017
, “
Low Leakage Shaft-End Seals for Utility-Scale Supercritical CO2 Turboexpanders
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022503
.10.1115/1.4034258
12.
Rimpel
,
A.
,
Smith
,
N.
,
Wilkes
,
J.
,
Delgado
,
H.
,
Allison
,
T.
,
Bidkar
,
R. A.
, and
Kumar
,
U.
, et al.,
2018
, “
Test Rig Design for Large Supercritical CO2 Turbine Seals
,”
Proceedings of the Sixth International Symposium sCO2 Power Cycles
,
Pittsburgh, PA
, Mar.
27
29
.https://sco2symposium.com/papers2018/turbomachinery/054_Paper.pdf
13.
Trivedi
,
D.
,
Bidkar
,
R. A.
,
Wolfe
,
C.
, and
Zheng
,
X.
,
2018
, “
Film-Stiffness Characterization for Supercritical CO2 Film-Riding Seals
,”
ASME
Paper No. GT2018-76161.10.1115/GT2018-76161
14.
Tallman
,
J.
, and
Bidkar
,
R. A.
,
2018
, “
Heat Transfer Coefficient Characterization for Large Aspect Ratio Thin Films in Film-Riding Seals
,”
ASME
Paper No. GT2018-76168.10.1115/GT2018-76168
15.
Trivedi
,
D.
,
Bidkar
,
R. A.
,
Wolfe
,
C.
, and
Mortzheim
,
J.
,
2019
, “
Supercritical CO2 Tests for Hydrostatic Film Stiffness in Film-Riding Seals
,”
ASME
Paper No. GT2019-90975.10.1115/GT2019-90975
16.
Ertas
,
B. H.
,
2021
, “
Additively Manufactured Compliant Hybrid Gas Thrust Bearing for Supercritical Carbon Dioxide Turbomachinery: Design and Proof of Concept Testing
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081024
.10.1115/1.4050865
17.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
18.
Ertas
,
B. H.
,
2009
, “
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022503
.10.1115/1.2967476
19.
Dinc
,
S.
,
Demiroglu
,
M.
,
Turnquist
,
N.
,
Mortzheim
,
J.
,
Goetze
,
G.
,
Maupin
,
J.
,
Hopkins
,
J.
,
Wolfe
,
C.
, and
Florin
,
M.
,
2002
, “
Fundamental Design Issues of Brush Seals for Industrial Applications
,”
ASME J. Turbomach.
,
124
(
2
), pp.
293
300
.10.1115/1.1451847
20.
Proctor
,
M. P.
,
Kumar
,
A.
, and
Delgado
,
I. R.
,
2004
, “
High-Speed, High-Temperature Finger Seal Test Results
,”
J. Propul. Power
,
20
(
2
), pp.
312
318
.10.2514/1.9256
21.
Grondahl
,
C.
,
2009
, “
Pressure Actuated Leaf Seal Feasibility Study and Demonstration
,”
AIAA
Paper No. 2009-5167.10.2514/6.2009-5167
22.
Delgado
,
A.
,
San Andres
,
L.
, and
Justak
,
J. F.
,
2005
, “
Measurements of Leakage, Structural Stiffness and Energy Dissipation Parameters in a Shoed Brush Seal
,”
Sealing Technol.
,
2005
(
12
), pp.
7
10
.10.1016/S1350-4789(06)70993-X
23.
Justak
,
J. F.
, and
Crudgington
,
P.
,
2006
, “
Evaluation of a Film Riding Hybrid Seal
,”
AIAA
Paper No. 2006-4932.10.2514/6.2006-4932
24.
Stein
,
P. C.
,
1959
, “
Circumferential Shaft Seal
,”
U.S. Patent No. 2908516
.
25.
Borkiewicz
,
M. R.
,
1996
, “
Segmented Hydrodynamic Seal for Sealing a Rotatable Shaft
,”
U.S. Patent No. 5509664
.
26.
Ide
,
R. D.
,
1988
, “
Hydrodynamic Face Seal With Lift Pads
,”
U.S. Patent No. 4738453
.
27.
Munson
,
J.
, and
Pecht
,
G.
,
1992
, “
Development of Film Riding Face Seals for a Gas Turbine Engine
,”
Tribol. Trans.
,
35
(
1
), pp.
65
70
.10.1080/10402009208982090
28.
Turnquist
,
N.
,
Bagepalli
,
B.
,
Reluzco
,
G.
,
McNickle
,
A. D.
,
Dierkes
,
J.
,
Wolfe
,
C.
,
Athavle
,
M.
, et al.,
1997
, “
Aspirating Face Seal Modeling and Full Scale Testing
,”
AIAA
Paper No. 97-2631.10.2514/6.97-2631
29.
Turnquist
,
N. A.
,
Tseng
,
T. W.
,
McNickle
,
A. D.
, and
Steinetz
,
B. M.
,
1999
, “
Full Scale Testing of an Aspirating Face Seal With Angular Misalignment
,”
AIAA
Paper No. 99-2682.10.2514/6.99-2682
30.
John Crane
, 2016, “
Gas Seals for Compressor Applications, Product Brochure
,”
John Crane
, Morton Grove, IL, accessed Nov. 20, 2024, https://www.johncrane.com/en/products/mechanical-seals/compressor-seals/dry-gas-seals
31.
Flow Serve
, 2016, “
Industrial Compressor Seals, Product Brochure
,”
Flow Serve
, Irving, TX, accessed Nov. 20, 2024, https://www.flowserve.com/en/products/products-catalog/seals/mechanical-seals/compressor-seals-systems-gaspacr/
32.
Trivedi
,
D.
,
Ruggiero
,
E.
,
Williams
,
J.
,
Wolfe
,
C. E.
,
Kirk
,
J.
, and
Graham
,
J.
,
2019
, “
Test Rig Commissioning for Advanced Rotor-Stator Seals
,”
ASME
Paper No. GT2019-90965.10.1115/GT2019-90965
33.
Rowe
,
W. B.
,
2012
,
Hydrostatic, Aerostatic and Hybrid Bearing Design
,
Elsevier Butterworth-Heinemann
, Waltham, MA.
34.
San Andrés
,
L.
,
2006
, “
Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation
,”
ASME J. Tribol.
,
128
(
3
), pp.
551
558
.10.1115/1.2194918
35.
Bidkar
,
R. A.
,
Kumar
,
U.
,
Zhang
,
X.
,
Sarawate
,
N.
,
Powers
,
J.
,
Anandika
,
N.
, and
Ertas
,
B.
,
2023
, “
Test Rig Concept for Evaluating the Performance of a CO2 Immersed Electromechanical Rotor System Utilizing Gas Bearings: Part-2 Thermal Systems & Flow Loop Design
,”
ASME
Paper No. GT2023-103989.10.1115/GT2023-103989
You do not currently have access to this content.