Engineers are faced with two major challenges when carrying out the thermal-fluid design of a complex system consisting of many interacting components. The first challenge is to predict the performance of all the individual thermal-fluid components. The second challenge is to predict the performance of the integrated plant consisting of all its subsystems. The complexity associated with the thermal-fluid design of complex systems requires the use of a variety of analysis techniques and simulation tools. These range from simple one-dimensional models that do not capture all the significant physical phenomena, to large-scale three-dimensional computational fluid dynamics (CFD) codes that, for practical reasons, cannot simulate the entire plant as a single integrated model. In the systems CFD approach, a network code serves as the framework to link the models of the various components together and to control the solution. The models of the components can be of varying degrees of complexity. These can range from simple lumped models to complex fully three-dimensional CFD models. This paper gives a brief overview of the systems CFD (SCFD) approach and an overview of the model of the pebble bed nuclear reactor that was developed in the context of the SCFD approach.

References

1.
Becker
,
S.
, and
Laurien
,
E.
, 2003, “
Three-Dimensional Numerical Simulation of Flow and Heat Transport in High-Temperature Nuclear Reactors
,”
Nucl. Eng. Des.
,
222
, pp.
189
201
.
2.
Greyvenstein
,
G. P.
, and
Rousseau
,
P. G.
, 2003, “
Design of a Physical Model of the PBMR With the Aid of Flownet
,”
Nucl. Eng. Des.
,
222
, pp.
203
213
.
3.
Rousseau
,
P. G.
, and
Greyvenstein
,
G. P.
, 2003, “
One-Dimensional Reactor Model for the Integrated Simulation of the PBMR Power Plant
,”
SAIMechE R&D Journal. J.
,
19
, pp.
25
30
.
4.
Stempniewicz
,
M. M.
, 2002, “
Steady-State and Accident Analyses of PBMR With the Computer Code SPECTRA
,”
Transactions of 1st International Topical Meeting on High Temperature Reactor Technology
,
Petten, Netherlands
.
5.
Kikstra
J. F.
, 2001, “
Modelling, Design and Control of a Cogeneration Nuclear Gas Turbine Plant
,” Ph.D. thesis, Delft University of Technology, Delft, Netherlands.
6.
Ji
,
H. B.
, 2004, “
A Global Convergent Algorithm for Flows in Two-Dimensional Networks
,”
J. Comput. Appl. Math.
,
167
, pp.
135
146
.
7.
Klein
,
A.
, and
Rüdiger
,
F.
, 2003, “
The Coupling of CFD With Hydraulic Simulations
,”
Proceedings of 6th World Conference in Applied Fluid Dynamics
,
B.
Löffler
, and
A.
Müller
, eds., Nürnberg, Germany.
8.
Anderson
,
N.
,
Hassan
,
Y.
, and
Schultz
,
R.
2008,“
Analysis of the Hot Gas Flow in the Outlet Plenum of the Very High Temperature Reactor Using RELAP-3D System Code and a CFD Code
,”
Nucl. Eng. Des.
,
238
, pp.
274
279
.
9.
Greyvenstein
,
G. P.
, and
Laurie
,
D. P.
, 1994, “
A Segregated CFD Approach to Pipe Network Analysis
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
3685
3705
.
10.
Greyvenstein
,
G. P.
, 2002, “
An Implicit Method for the Analysis of Transient Flows in Pipe Networks
,”
Int. J. Numer. Methods Eng.
,
53
, pp.
1127
1143
.
11.
Du Toit
,
C. G.
,
Rousseau
,
P. G.
,
Greyvenstein.
G. P.
, and
Landman
,
W. A.
, 2006, “
A Systems CFD Model of a Packed Bed High Temperature Gas-Cooled Nuclear Reactor
,”
Int. J. Therm. Sci.
,
45
, pp.
70
85
.
12.
Kruger
,
J.-H.
, and
Du Toit
,
C. G.
2006, “
Integrated Systems CFD Analysis Applied to Boiler Simulation
,”
Proceedings of 13th International Heat Transfer Conference
,
G.
Davis
,
V.
de
, and
E.
Leonardi
, eds., Sydney, Australia.
13.
Van der Merwe
,
J.
, and
Van Ravenswaay
,
J. P.
, 2003, “
flownex Version 6.4 User Manual
,”
M-Tech Industrial
,
Potchefstroom, South Africa
.
14.
Greyvenstein
,
G. P.
,
Van Ravenswaay
,
J. P.
, and
Rousseau
,
P. G.
, 2002, “
Dynamic Modelling of Heat, Mass and Momentum Transfer in the Pebble Bed Modular Reactor
,”
Proceedings of 1st International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
J. P.
Meyer
, ed., Skukuza, Kruger Park, South Africa, pp.
856
861
.
15.
Nuclear Safety Standards Commission (KTA), 1981, “
Reactor Core Design of High-Temperature Gas-Cooled Reactor, Part 3: Loss of Pressure Through Friction in Pebble Bed Cores
,” Safety Standards, KTA 3102.3, Issue 3/81.
16.
Peyret
,
R.
, and
Taylor
,
T. D.
, 1983, “
Computational Methods for Fluid Flow
,”
Springer
,
New York
.
17.
International Atomic Energy Agency, 2000, “
Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions
,” IAEA-TECDOC-1163.
18.
Kugeler
,
K.
, and
Schulten
,
R.
, 1989, “
Hochtemperatur-Reaktortechnik
,”
Springer
,
Heidelberg
.
19.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1990, “
Non-Darcian Flow, Heat and Mass Transfer in Catalytic Packed-Beds Reactors
,”
Chem. Eng. Sci.
,
45
, pp.
55
61
.
20.
Rousseau
,
P. G.
,
Du Toit
,
C. G.
, and
Landman
,
W. A.
, 2006, “
Validation of a Transient Thermal-Fluid Systems CFD Model for a Packed Bed High Temperature Gas-Cooled Reactor
,”
Nucl. Eng. Des.
,
236
, pp.
555
564
.
21.
Niessen
H.-F.
, and
Stöcker
,
B.
, 1997, “
Data Sets of sana Experiment: 1994-1996
,” JUEL-3409, Forschungszentrum Jülich.
22.
Rousseau
,
P. G.
, and
Van Staden
,
M. P.
, 2006, “
Introduction to the PBMR Heat Transfer Test Facility
,” Proceedings 3rd International Topical Meeting on High Temperature Reactor Technology (HTR2006), Johannesburg, South Africa.
23.
Du Toit
,
C. G.
, 2008, “
Radial Variation in Porosity in Annular Packed Beds
,”
Nucl. Eng. Des.
,
238
, pp.
3073
3079
.
24.
Theuerkauf
,
J.
,
Witt
,
P.
, and
Schwesig
,
D.
, 2006, “
Analysis of Particle Porosity Distribution in Fixed Beds Using the Discrete Element Method
,”
Powder Technol.
,
165
, pp.
92
99
.
25.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
, 1979, “
A Discrete Element Model for Granular Assemblies
,”
Geotechnique
,
29
, pp.
1055
1066
.
26.
Mueller
,
G.
, 1992, “
Radial Void Fraction Distribution in Randomly Packed Fixed Beds of Uniformly Sized Spheres in Cylindrical Containers
,”
Powder Technol.
,
72
, pp.
269
275
.
27.
Du Toit
,
C. G.
, 2002, “
The Numerical Determination of the Variation in the Porosity of the Pebble-Bed Core
,”
Proceedings of 1st International Topical Meeting on High Temperature Reactor Technology (HTR2002)
,
Petten, Netherlands
.
28.
Van Antwerpen
,
W.
,
Du Toit
,
C. G.
, and
Rousseau
,
P. G.
, 2010, “
A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles
,”
Nucl. Eng. Des.
,
240
, pp.
1803
1818
.
29.
Polson
,
A.
, 2003,private communication.
30.
De Klerk
,
A.
, 2003, “
Voidage Variation in Packed Beds at Small Column to Particle Diameter Ratio
,”
AIChE J.
,
49
, pp.
2022
2029
.
31.
Goodling
,
J. S.
, and
Khader
,
M. S.
, 1985, “
Co-Ordination Number Distribution of Spherical Particles in a Packed Cylindrical Bed
,”
Powder Technol.
,
44
, pp.
53
55
.
32.
Liu
,
L. F.
,
Zhang
,
A. B.
, and
Yu
,
A. B.
, 1999, “
Dynamic Simulation of the Centripetal Packing of Mono-Sized Spheres
,”
Physica A
,
268
, pp.
433
53
.
33.
Sui
,
W. W. M.
, and
Lee
,
S. H. K.
, 2000, “
Effective Conductivity Computation of a Packed Bed Using Constriction Resistance and Contact Angle Effects
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3917
3924
.
34.
Du Toit
,
C. G.
,
Van der Walt
,
A. J. K.
, and
Van der Merwe
,
J.
, 2008, “
Using an Effective Viscosity to Account for the Effect of the Walls on the Pressure Drop Through an Annular Packed Bed
,”
Proceedings of 4th International Topical Meeting on High Temperature Reactor Technology (HTR2008)
,
Washington, DC
.
35.
Vortmeyer
,
D.
, and
Schuster
,
J.
, 1983, “
Evaluation of Steady Flow Profiles in Rectangular and Circular Packed Beds by a Variational Method
,”
Chem. Eng. Sci.
,
38
, pp.
1691
1699
.
36.
Bey
,
O.
, and
Eigenberger
,
G..
, 1997, “
Fluid Flow Through Catalyst Filled Tubes
,”
Chem. Eng. Sci.
,
52
, pp.
1365
1376
.
37.
Eisfeld
,
B.
, and
Schnitzlein
,
K.
, 2001, “
The Influence of Confining Walls on the Pressure Drop in Packed Beds
,”
Chem. Eng. Sci.
,
56
, pp.
4321
4329
.
38.
Van Antwerpen
,
A.
,
Rousseau
,
P. G.
, and
Du Toit
,
C. G.
, 2009, “
Accounting for Porous Structure in Effective Thermal Conductivity Calculation in a Pebble Bed Reactor
,”
Proceedings of 2009 International Congress on Advances in Nuclear Power Plants (ICAPP’09)
,
Shinjuku, Japan
.
39.
Van Antwerpen
,
W.
,
Rousseau
,
P. G..
, and
Du Toit
,
C. G..
, 2010, “
Multi-Sphere Unit Cell Model to Calculate the Effective Thermal Conductivity in Pebble Bed Reactors
,”
Transactions of European Nuclear Conference ENC2010
, Barcelona, Spain.
40.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Effective Thermal Conductivity of Rough Spherical Packed Beds
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3691
3701
.
41.
Van Antwerpen
,
W.
, 2009, “
Modelling the Effective Thermal Conductivity in the Near-Wall Region of a Packed Pebble Bed
,”
Ph.D. thesis
,
North-West University
,
Potchefstroom, South Africa
.
42.
Chen
,
C. K.
, and
Tien
,
C. L.
, 1973, “
Conductance of Packed Spheres in Vacuum
,”
ASME J. Heat Transfer
,
95
, pp.
302
308
.
43.
Yovanovich
,
M. M.
, and
Marotta
,
E. E
, 2006, “
Thermal Spreading and Contact Resistances
,”
Heat Transfer Handbook
,
A.
Bejan
, ed., pp.
261
394
.
44.
Breitbach
,
G.
, and
Barthels
,
H.
, 1980, “
The Radiant Heat Transfer in the High Temperature Reactor Core After Failure of the Afterheat Removal Systems
,”
Nucl. Technol.
,
49
, pp.
392
399
.
45.
Zehner
,
P.
, and
Schlünder
,
E. U.
, 1970, “
Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen
,”
Chem.-Ing.-Tech.
,
42
, pp.
933
941
.
You do not currently have access to this content.