Abstract

The ability to accurately predict and control the tissue temperature distribution profile is critical to the success of hyperthermia treatment. Magnetic nanoparticle hyperthermia is a subclass of hyperthermia treatment that can selectively heat a tumor without damaging the surrounding healthy tissues. Living tissues are highly nonhomogeneous, and non-Fourier thermal behavior is observed experimentally in tissues. The two-dimensional single phase lag and dual phase lag models with non-Fourier boundary conditions have been considered to investigate the temperature profile in biological tissues during hyperthermia treatment. Arbitrary-shaped and circular-shaped tumor tissue domains surrounded by healthy circular tissue are considered for simulation. We obtain the numerical solution for the models by combining Gaussian radial basis functions (RBFs) and shifted Chebyshev polynomials for the spatial and temporal directions, respectively. The impacts of phase lag times (τq,τT) and heat source parameters (H0,ϕ,f) on thermal responses in tumors are investigated. The analysis shows that tumor domains are heated without causing much harm to the healthy tissue domain.

References

1.
Attaluri
,
A.
,
Ma
,
R.
,
Qiu
,
Y.
,
Li
,
W.
, and
Zhu
,
L.
,
2011
, “
Nanoparticle Distribution and Temperature Elevations in Prostatic Tumours in Mice During Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
,
27
(
5
), pp.
491
502
.10.3109/02656736.2011.584856
2.
Truskey
,
G. A.
,
Yuan
,
F.
, and
Katz
,
D. F.
,
2004
,
Transport Phenomena in Biological Systems
,
Pearson/Prentice Hall, Upper
Saddle River, NJ
.
3.
Jordan
,
A.
,
Scholz
,
R.
,
Maier-Hauff
,
K.
,
van Landeghem
,
F. K. H.
,
Waldoefner
,
N.
,
Teichgraeber
,
U.
,
Pinkernelle
,
J.
, et al
.
,
2006
, “
The Effect of Thermotherapy Using Magnetic Nanoparticles on Rat Malignant Glioma
,”
J. Neuro-Oncol.
,
78
(
1
), pp.
7
14
.10.1007/s11060-005-9059-z
4.
Visaria
,
R. K.
,
Griffin
,
R. J.
,
Williams
,
B. W.
,
Ebbini
,
E. S.
,
Paciotti
,
G. F.
,
Song
,
C. W.
, and
Bischof
,
J. C.
,
2006
, “
Enhancement of Tumor Thermal Therapy Using Gold Nanoparticle–Assisted Tumor Necrosis Factor-α Delivery
,”
Mol. Cancer Ther.
,
5
(
4
), pp.
1014
1020
.10.1158/1535-7163.MCT-05-0381
5.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Thiesen
,
B.
,
Taymoorian
,
K.
,
Cho
,
C. H.
,
Waldöfner
,
N.
,
Scholz
,
R.
,
Jordan
,
A.
,
Loening
,
S. A.
, and
Wust
,
P.
,
2007
, “
Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution
,”
Eur. Urol.
,
52
(
6
), pp.
1653
1662
.10.1016/j.eururo.2006.11.023
6.
Wilhelm
,
C.
,
Fortin
,
J.-P.
, and
Gazeau
,
F.
,
2007
, “
Tumour Cell Toxicity of Intracellular Hyperthermia Mediated by Magnetic Nanoparticles
,”
J. Nanosci. Nanotechnol.
,
7
(
8
), pp.
2933
2937
.10.1166/jnn.2007.668
7.
Steeves
,
R. A.
,
1992
, “
Hyperthermia in Cancer Therapy: Where Are We Today and Where Are We Going?
,”
Bull. N. Y. Acad. Med.
,
68
(
2
), pp.
341
350
.https://pmc.ncbi.nlm.nih.gov/articles/instance/1810183/pdf/bullnyacadmed00003-0177.pdf
8.
Gilchrist
,
R.
,
Medal
,
R.
,
Shorey
,
W. D.
,
Hanselman
,
R. C.
,
Parrott
,
J. C.
, and
Taylor
,
C. B.
,
1957
, “
Selective Inductive Heating of Lymph Nodes
,”
Ann. Surg.
,
146
(
4
), pp.
596
606
.10.1097/00000658-195710000-00007
9.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
10.
Wulff
,
W.
,
1974
, “
The Energy Conservation Equation for Living Tissues
,”
IEEE Trans. Biomed. Eng.
, BME-21(
6
), pp.
494
495
.10.1109/TBME.1974.324342
11.
Klinger
,
H.
,
1974
, “
Heat Transfer in Perfused Biological Tissue. i. General Theory
,”
Bull. Math. Biol.
,
36
, pp.
403
415
.10.1016/S0092-8240(74)80038-8
12.
Weinbaum
,
S.
, and
Jiji
,
L. M.
,
1985
, “
A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature
,”
ASME J. Biomech. Eng.
,
107
(
2
), pp.
131
139
.10.1115/1.3138533
13.
Chen
,
M.
, and
Holmes
,
K. R.
,
1980
, “
Microvascular Contributions in Tissue Heat Transfer
,”
Ann. N. Y. Acad. Sci.
,
335
(
1
), pp.
137
150
.10.1111/j.1749-6632.1980.tb50742.x
14.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
2008
, “
A General Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3190
3199
.10.1016/j.ijheatmasstransfer.2007.05.030
15.
Cattaneo
,
C.
,
1958
, “
A Form of Heat-Conduction Equations Which Eliminates the Paradox of Instantaneous Propagation
,”
C. R.
,
247
, p.
431
.
16.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Theorie Continue de L’equation de la Chaleur
,”
C. R.
,
246
, pp.
3154
3155
.
17.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
18.
Liu
,
K.-C.
, and
Lin
,
C.-N.
,
2010
, “
Temperature Prediction for Tumor Hyperthermia With the Behavior of Thermal Wave
,”
Numer. Heat Transfer, Part A
,
58
(
10
), pp.
819
833
.10.1080/10407782.2010.523330
19.
Liu
,
K.-C.
, and
Chen
,
H.-T.
,
2009
, “
Analysis for the Dual-Phase-Lag Bio-Heat Transfer During Magnetic Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1185
1192
.10.1016/j.ijheatmasstransfer.2008.08.025
20.
Kumar
,
D.
,
Kumar
,
P.
, and
Rai
,
K. N.
,
2016
, “
A Study on DPL Model of Heat Transfer in Bi-Layer Tissues During MFH Treatment
,”
Comput. Biol. Med.
,
75
, pp.
160
172
.10.1016/j.compbiomed.2016.06.002
21.
Liu
,
K.-C.
, and
Chen
,
H.-T.
,
2010
, “
Investigation for the Dual Phase Lag Behavior of Bio-Heat Transfer
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1138
1146
.10.1016/j.ijthermalsci.2010.02.007
22.
Liu
,
K.-C.
,
Cheng
,
P.-J.
, and
Wang
,
Y.-N.
,
2011
, “
Analysis of Non-Fourier Thermal Behavior for Multi-Layer Skin Model
,”
Therm. Sci.
,
15
(
Suppl. 1
), pp.
61
67
.10.2298/TSCI11S1061L
23.
Mason
,
J. C.
, and
Handscomb
,
D. C.
,
2002
,
Chebyshev Polynomials
,
CRC Press, New York
.
24.
Buhmann
,
M. D.
,
2003
,
Radial Basis Functions: Theory and Implementations
, Vol.
12
,
Cambridge University Press, Cambridge, UK
.
25.
Verma
,
R.
, and
Kumar
,
S.
,
2020
, “
Computational Study on Constant and Sinusoidal Heating of Skin Tissue Using Radial Basis Functions
,”
Comput. Biol. Med.
,
121
, p.
103808
.10.1016/j.compbiomed.2020.103808
26.
Raouf
,
I.
,
Gas
,
P.
, and
Kim
,
H.
,
2021
, “
Numerical Investigation of Ferrofluid Preparation During In-Vitro Culture of Cancer Therapy for Magnetic Nanoparticle Hyperthermia
,”
Sensors
,
21
(
16
), p.
5545
.10.3390/s21165545
27.
Rosensweig
,
R.
,
2002
, “
Heating Magnetic Fluid With Alternating Magnetic Field
,”
J. Magn. Magn. Mater.
,
252
, pp.
370
374
.10.1016/S0304-8853(02)00706-0
28.
Polychronopoulos
,
N. D.
,
Gkountas
,
A. A.
,
Sarris
,
I. E.
, and
Spyrou
,
L. A.
,
2021
, “
A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors
,”
Appl. Sci.
,
11
(
20
), p.
9526
.10.3390/app11209526
29.
Boyd
,
J. P.
,
2001
,
Chebyshev and Fourier Spectral Methods
,
Dover Publications Inc.
, Mineola, NY.
30.
Meena
,
B. S.
, and
Kumar
,
S.
,
2022
, “
Computational Study on 2d Space-Time Fractional Single- Phase-Lag Bioheat Model Using RBF and Chebyshev Polynomial Based Space-Time
,”
Waves Random Complex Media
, pp.
1
28
.10.1080/17455030.2022.2136418
31.
Groen
,
J. A.
,
Crezee
,
J.
,
van Laarhoven
,
H. W.
,
Bijlsma
,
M. F.
, and
Kok
,
H. P.
,
2023
, “
Quantification of Tissue Property and Perfusion Uncertainties in Hyperthermia Treatment Planning: Multianalysis Using Polynomial Chaos Expansion
,”
Comput. Methods Programs Biomed.
,
240
, p.
107675
.10.1016/j.cmpb.2023.107675
32.
Herrera
,
T. D.
,
Ödén
,
J.
,
Polo
,
A. L.
,
Crezee
,
J.
, and
Kok
,
H. P.
,
2024
, “
Thermoradiotherapy Optimization Strategies Accounting for Hyperthermia Delivery Uncertainties
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
120
(
5
), pp.
1435
1447
.10.1016/j.ijrobp.2024.07.2146
33.
Laub
,
A. J.
,
2004
,
Matrix Analysis for Scientists and Engineers
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.