Abstract

The topology optimization (TO) method is developed and applied to 3D heat sink design optimization using the finite element method (FEM). To go from theory to practical application of optimized heat sink designs, the impact of the ratio between fin height (Hc) and substrate thickness (Hb) on the performance of heat sinks was investigated, studying the critical role of geometric parameters in heat dissipation performance, focusing on optimizing the internal fluid channels to enhance the overall hydraulic and thermal efficiencies under various operating conditions. Optimal flow conditions vary across TO designs; notably, structures with near-equal (Hc) and (Hb) ratios demonstrated superior energy and fluid flow overall performances. At high Reynolds numbers, the optimized heat sink designs showed an enhancement in the overall performance up to 41.2%, showcasing the effectiveness of the present TO method. The new 3D optimal designs can be applied to different applications such as the cooling of CPU, GPU, and different electronic chips.

References

1.
Tang
,
K.
,
Lin
,
G. P.
,
Guo
,
Y. D.
,
Huang
,
J. Y.
,
Zhang
,
H. X.
, and
Miao
,
J. Y.
,
2023
, “
Simulation and Optimization of Thermal Performance in Diverging/Converging Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
200
, p.
123495
.
2.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
.
3.
Rathore
,
V.
,
Lokhande
,
A. A.
,
Mane
,
Y. G.
, and
Lele
,
M. M.
,
2023
,
Heat Transfer Enhancement of Fin and Tube Heat Exchanger Using Ribs
,
Springer
, pp.
399
407
.
4.
Ali
,
E.
,
Tamang
,
S.
,
Park
,
J.
,
Choi
,
J.
,
Choi
,
J.
,
Park
,
C.
, and
Park
,
H.
,
2024
, “
A Novel Spiral Grooved Cooling Path Heat Sink for the Cooling of High Voltage Direct Current Devices
,”
Int. J. Therm. Sci.
,
195
, p.
108665
.
5.
Gore
,
S. S.
, and
Dhoble
,
A. J. M. T. P.
,
2023
, “
Server Processor Heat Sink Analysis and Modifications to Improve Its Thermal Performance
,”
Mater. Today: Proc.
,
82
, pp.
208
216
. S2214-7853(23)00170-0],[10.1016/j.matpr.2023.01.118
6.
Durgam
,
S.
,
Ghodake
,
B.
, and
Mohite
,
S.
,
2022
, “
Numerical Investigation on Heat Sink Material for Temperature Control of Electronics
,”
J. Phys.: Conf. Ser.
,
2312
(
1
), p.
012016
.
7.
Kunjir
,
C.
, and
Gawali
,
S.
,
2023
, “
Numerical Analysis and Optimization Flow Around Array of Heated Semi-circular Fins
,”
AIP Conf. Proc.
,
2427
, p.
020072
.
8.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for Vlsi
,”
Electron Device Lett.
,
2
(
5
), pp.
126
129
.
9.
Pan
,
H.
,
Liu
,
X.
,
Yang
,
Q.
,
Xu
,
H.
, and
Xu
,
D.
,
2023
, “
Three-Dimensional Lattice Boltzmann Study on Structure Optimization and Heat Dissipation Performance of Pin-Fin Heat Sink Integrated With Phase Change Material
,”
J. Energy Storage
,
71
, p.
108233
.
10.
Piancastelli
,
L.
,
Sportiello
,
L.
,
Pezzuti
,
E.
, and
Cassani
,
S.
,
2019
, “
Study and Optimization of Advanced Heat Sinks for Processors
,”
J. Eng. Appl. Sci.
,
14
(
5
), pp.
1082
1088
.
11.
Xie
,
W.
,
Xia
,
Q.
,
Yu
,
Q.
, and
Li
,
Y.
,
2023
, “
An Effective Phase Field Method for Topology Optimization Without the Curvature Effects
,”
Comput. Math. Appl.
,
146
, pp.
200
212
.
12.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
13.
Yang
,
C.
,
Wang
,
D.
,
Ali
,
S.
,
Wang
,
G.
, and
Dbouk
,
T.
,
2025
, “
Topology Optimization of Rectangular Parallel Plate Heat Exchanger Unit
,”
Int. J. Therm. Sci.
,
208
, p.
109503
.
14.
Guest
,
J. K.
, and
Prevost
,
J. H.
,
2006
, “
Topology Optimization of Creeping Fluid Flows Using a Darcy-Stokes Finite Element
,”
Int. J. Numer. Methods Eng.
,
66
(
3
), pp.
461
484
.
15.
Wang
,
C.
,
Fang
,
L.
,
Wang
,
X.
,
Zhou
,
H.
, and
Guo
,
X.
,
2024
, “
Topology Optimization of Steady Navier-Stokes Flow Using Moving Morphable Void Method
,”
Comput. Math. Appl.
,
161
, pp.
212
224
.
16.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
17.
Olesen
,
L. H.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2006
, “
A High-Level Programming-Language Implementation of Topology Optimization Applied to Steady-State Navier-Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
65
(
7
), pp.
975
1001
.
18.
Gersborg-Hansen
,
A.
,
Sigmund
,
O.
, and
Haber
,
R. B.
,
2005
, “
Topology Optimization of Channel Flow Problems
,”
Struct. Multidiscipl. Optim.
,
30
(
3
), pp.
181
192
.
19.
Evgrafov
,
A.
,
2006
, “
Topology Optimization of Slightly Compressible Fluids
,”
Zamm Z. Angew. Math. Mech.
,
86
(
1
), pp.
46
62
.
20.
Pingen
,
G.
, and
Maute
,
K.
,
2010
, “
Optimal Design for Non-Newtonian Flows Using a Topology Optimization Approach
,”
Comput. Math. Appl.
,
59
(
7
), pp.
2340
2350
.
21.
Yoon
,
G. H.
,
2016
, “
Topology Optimization for Turbulent Flow With Spalart-Allmaras Model
,”
Comput. Methods Appl. Mech. Eng.
,
303
, pp.
288
311
.
22.
Dilgen
,
C. B.
,
Dilgen
,
S. B.
,
Fuhrman
,
D. R.
,
Sigmund
,
O.
, and
Lazarov
,
B. S.
,
2018
, “
Topology Optimization of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
363
393
.
23.
Gersborg-Hansen
,
A.
,
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
,”
Struct. Multidiscipl. Optim.
,
31
(
4
), pp.
251
259
.
24.
Bruns
,
T. E.
,
2007
, “
Topology Optimization of Convection-Dominated, Steady-State Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2859
2873
.
25.
Luo
,
J.-W.
,
Chen
,
L.
,
Wang
,
Z.
, and
Tao
,
W.
,
2022
, “
Topology Optimization of Thermal Cloak Using the Adjoint Lattice Boltzmann Method and the Level-Set Method
,”
Appl. Therm. Eng.
,
216
, p.
119103
.
26.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
, pp.
841
854
.
27.
Zeng
,
S.
, and
Lee
,
P. S.
,
2019
, “
Topology Optimization of Liquid-Cooled Microchannel Heat Sinks: An Experimental and Numerical Study
,”
Int. J. Heat Mass Transfer
,
142
, p.
118401
.
28.
Zeng
,
T.
,
Wang
,
H.
,
Yang
,
M.
, and
Alexandersen
,
J.
,
2020
, “
Topology Optimization of Heat Sinks for Instantaneous Chip Cooling Using a Transient Pseudo-3D Thermofluid Model
,”
Int. J. Heat Mass Transfer
,
154
, p.
119681
.
29.
Dede
,
E. M.
,
2010
, “
Multiphysics Optimization, Synthesis, and Application of Jet Impingement Target Surfaces
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
,
June 2–5
, pp.
1
7
.
30.
Dede
,
E. M.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.
31.
Koga
,
A. A.
,
Lopes
,
E. C. C.
,
Villa Nova
,
H. F.
,
de Lima
,
C. R.
, and
Nelli Silva
,
E. C.
,
2013
, “
Development of Heat Sink Device by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
64
, pp.
759
772
.
32.
Lv
,
Y.
, and
Liu
,
S.
,
2018
, “
Topology Optimization and Heat Dissipation Performance Analysis of a Micro-channel Heat Sink
,”
Meccanica
,
53
(
15
), pp.
3693
3708
.
33.
Haertel
,
J. H. K.
,
Engelbrecht
,
K.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2018
, “
Topology Optimization of a Pseudo 3D Thermofluid Heat Sink Model
,”
Int. J. Heat Mass Transfer
,
121
, pp.
1073
1088
.
34.
Hassanzadeh
,
A.
,
Moradi
,
S.
, and
Burton
,
H. V.
,
2024
, “
Performance-Based Design Optimization of Structures: State-of-the-Art Review
,”
J. Struct. Eng.
,
150
(
8
), p.
03124001
.
35.
He
,
W.
,
Wang
,
S.
,
Li
,
Y.
, and
Zhao
,
Y.
,
2016
, “
Structural Size Optimization on an Exhaust Exchanger Based on the Fluid Heat Transfer and Flow Resistance Characteristics Applied to an Automotive Thermoelectric Generator
,”
Energy Convers. Manage.
,
129
, pp.
240
249
.
36.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
37.
Li
,
H.
,
Kondoh
,
T.
,
Jolivet
,
P.
,
Furuta
,
K.
,
Yamada
,
T.
,
Zhu
,
B.
,
Zhang
,
H.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2022
, “
Optimum Design and Thermal Modeling for 2D and 3D Natural Convection Problems Incorporating Level Set-Based Topology Optimization With Body-Fitted Mesh
,”
Int. J. Numer. Methods Eng.
,
123
(
9
), pp.
1954
1990
.
38.
Liu
,
A.
,
Wang
,
G.
,
Wang
,
D.
,
Peng
,
X.
, and
Yuan
,
H.
,
2021
, “
Study on the Thermal and Hydraulic Performance of Fin-and-Tube Heat Exchanger Based on Topology Optimization
,”
Appl. Therm. Eng.
,
197
, p.
117380
.
39.
Vorayos
,
N.
, and
Kiatsiriroat
,
T.
,
2010
, “
Thermal Characteristics of Louvered Fins With a Low-Reynolds Number Flow
,”
J. Mech. Sci. Technol.
,
24
, pp.
845
850
.
40.
Yoon
,
G. H.
,
2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,”
J. Mech. Sci. Technol.
,
24
(
6
), pp.
1225
1233
.
41.
Xu
,
L.
,
Li
,
H.
,
Ding
,
X.
,
Liu
,
S.
, and
IEEE
,
2017
, “
Design of Microchannel Heat Sink Using Topology Optimization for High Power Modules Cooling
.”
42.
Sato
,
Y.
,
Yaji
,
K.
,
Izui
,
K.
,
Yamada
,
T.
, and
Nishiwaki
,
S.
,
2018
, “
An Optimum Design Method for a Thermal-Fluid Device Incorporating Multiobjective Topology Optimization With an Adaptive Weighting Scheme
,”
J. Mech. Des.
,
140
(
3
), p.
031402
.
43.
Li
,
H.
,
Ding
,
X.
,
Meng
,
F.
,
Jing
,
D.
, and
Xiong
,
M.
,
2019
, “
Optimal Design and Thermal Modelling for Liquid-Cooled Heat Sink Based on Multi-objective Topology Optimization: An Experimental and Numerical Study
,”
Int. J. Heat Mass Transfer
,
144
, p.
118638
.
44.
Zeng
,
S.
,
Kanargi
,
B.
, and
Lee
,
P. S.
,
2018
, “
Experimental and Numerical Investigation of a Mini Channel Forced Air Heat Sink Designed by Topology Optimization
,”
Int. J. Heat Mass Transfer
,
121
, pp.
663
679
.
45.
Qian
,
X.
, and
Dede
,
E. M.
,
2016
, “
Topology Optimization of a Coupled Thermal-Fluid System Under a Tangential Thermal Gradient Constraint
,”
Struct. Multidiscipl. Optim.
,
54
(
3
), pp.
531
551
.
46.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
J. Mech. Des.
,
137
(
11
), p.
111403
.
47.
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2016
, “
Large Scale Three-Dimensional Topology Optimisation of Heat Sinks Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
,
100
, pp.
876
891
.
48.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
, pp.
68
75
.
49.
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Filters in Topology Optimization Based on Helmholtz-Type Differential Equations
,”
Int. J. Numer. Methods Eng.
,
86
(
6
), pp.
765
781
.
50.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
, pp.
767
784
.
51.
Xu
,
S.
,
Cai
,
Y.
, and
Cheng
,
G.
,
2010
, “
Volume Preserving Nonlinear Density Filter Based on Heaviside Functions
,”
Struct. Multidiscipl. Optim.
,
41
, pp.
495
505
.
52.
Kawamoto
,
A.
,
Matsumori
,
T.
,
Yamasaki
,
S.
,
Nomura
,
T.
,
Kondoh
,
T.
, and
Nishiwaki
,
S.
,
2011
, “
Heaviside Projection Based Topology Optimization by a PDE-Filtered Scalar Function
,”
Struct. Multidiscipl. Optim.
,
44
, pp.
19
24
.
53.
Wang
,
G. H.
,
Liu
,
A. K.
,
Dbouk
,
T.
,
Wang
,
D. B.
,
Peng
,
X.
, and
Ali
,
A.
,
2022
, “
Optimal Shape Design and Performance Investigation of Helically Coile D Tube Heat Exchanger Applying Mo-Sherpa
,”
Int. J. Heat Mass Transfer
,
184
, p.
122256
.
54.
Gao
,
H.
,
Zhang
,
Y.
,
Liu
,
Y.
,
Wang
,
Y.
,
Sun
,
P.
,
Ma
,
Y.
,
Gu
,
Z.
, and
Yu
,
W.
,
2022
, “
Numerical Simulation of Heat Transfer Performance of Different Heat Exchange Tubes in Heat Recovery Steam Generator
,”
Process Saf. Environ. Prot.
,
163
, pp.
506
512
.
55.
Hino
,
T.
,
Suzuki
,
K.
, and
Takagi
,
Y.
,
2022
, “
Modification of K-ω Turbulence Model for Ship Resistance Flow Predictions
,”
J. Ocean Eng. Mar. Energy
,
8
(
4
), pp.
527
538
.
You do not currently have access to this content.