Abstract

The safety and efficiency of marine operations are significantly influenced by external environmental conditions, with waves being the most critical factor affecting floating structures. These waves are described by the directional wave spectrum, which includes both spatial and frequency power distributions. However, real-time in situ wave spectrum measurements are often insufficient due to limitations in traditional methods. To address this issue, the wave buoy analogy (WBA) has emerged as a cost-effective and viable method for estimating sea states using ship motion responses. Despite its potential, the performance of WBA can vary due to a ship’s inherent hydrodynamic properties, specifically response amplitude operators (RAOs). This variability can lead to inaccurate sea state estimations, posing potential risks. In this study, an adaptive ship heading adjustment strategy was proposed to enhance the accuracy of WBA by identifying optimal heading angles, thereby mitigating inaccuracies in specific sea states. The WBA performance can be preliminarily evaluated from the perspective of restricted isometry property (RIP) using RAOs as input. The received assessment criterion helps determine the direction in which the ship can provide a more accurate estimate. The implementation of the heading adjustment strategy significantly improves the accuracy and robustness of sea state estimations. Numerical simulations validate the effectiveness of the proposed algorithm.

References

1.
Wang
,
S.
,
Moan
,
T.
, and
Gao
,
Z.
,
2025
, “Time-Domain Fatigue Analysis Methodology for Semi-submersible Hulls of Floating Wind Turbines.” Available at SSRN 5080108.
2.
Fu
,
J.
,
Shi
,
W.
,
Han
,
X.
,
Karimirad
,
M.
,
Wang
,
T.
, and
Li
,
X.
,
2025
, “
Development and Performance Study of a Multi-degree-of-freedom Loading Device for Real-Time Hybrid Model Testing of Floating Offshore Wind Turbines
,”
Marine Struct.
,
99
, p.
103717
.
3.
Ma
,
C.
,
Zhang
,
T.
,
Jiang
,
Z.
, and
Ren
,
Z.
,
2025
, “
Dynamic Analysis of Lowering Operations During Floating Offshore Wind Turbine Assembly Mating
,”
Renew. Energy
,
243
, p.
122528
.
4.
Chen
,
M.
,
Huang
,
W.
,
Liu
,
H.
,
Hallak
,
T. S.
,
Liu
,
S.
,
Yang
,
Y.
,
Tao
,
T.
, and
Jiang
,
Y.
,
2025
, “
A Novel SPM Wind-Wave-Aquaculture System: Concept Design and Fully Coupled Dynamic Analysis
,”
Ocean Eng.
,
315
, p.
119798
.
5.
Guo
,
Y.
, and
Alam
,
M.
,
2025
, “
Nonlinear Bending and Thermal Postbuckling of Magneto-electro-elastic Nonlocal Strain-Gradient Beam Including Surface Effects
,”
Appl. Math. Model.
,
142
, p.
115955
.
6.
Dam Nielsen
,
U.
,
2006
, “
Estimations of On-Site Directional Wave Spectra From Measured Ship Responses
,”
Mar. Struct.
,
19
(
1
), pp.
33
69
.
7.
Newman
,
J. N.
,
2018
,
Marine Hydrodynamics
,
The MIT Press
.
8.
Iseki
,
T.
, and
Ohtsu
,
K.
,
2000
, “
Bayesian Estimation of Directional Wave Spectra Based on Ship Motions
,”
Control Eng. Pract.
,
8
(
2
), pp.
215
219
.
9.
Nielsen
,
U. D.
, and
Dietz
,
J.
,
2020
, “
Ocean Wave Spectrum Estimation Using Measured Vessel Motions From an In-service Container Ship
,”
Marine Struct.
,
69
, p.
102682
.
10.
Mas-Soler
,
J.
, and
Simos
,
A. N.
,
2020
, “
A Bayesian Wave Inference Method Accounting for Nonlinearity Related Inaccuracies in Motion RAOs
,”
Appl. Ocean Res.
,
99
, p.
102125
.
11.
Pascoal
,
R.
,
Perera
,
L. P.
, and
Guedes Soares
,
C.
,
2017
, “
Estimation of Directional Sea Spectra From Ship Motions in Sea Trials
,”
Ocean Eng.
,
132
, pp.
126
137
.
12.
Kim
,
H.
,
Kang
,
H.
, and
Kim
,
M.-H.
,
2019
, “
Real-Time Inverse Estimation of Ocean Wave Spectra From Vessel-Motion Sensors Using Adaptive Kalman Filter
,”
Appl. Sci.
,
9
(
14
), p.
2797
.
13.
Peng
,
X.
,
Zhang
,
B.
, and
Rong
,
L.
,
2019
, “
A Robust Unscented Kalman Filter and Its Application in Estimating Dynamic Positioning Ship Motion States
,”
J. Marine Sci. Technol.
,
24
(
4
), pp.
1265
1279
.
14.
Ren
,
Z.
,
Han
,
X.
,
Verma
,
A. S.
,
Dirdal
,
J. A.
, and
Skjetne
,
R.
,
2021
, “
Sea State Estimation Based on Vessel Motion Responses: Improved Smoothness and Robustness Using Bézier Surface and L1 Optimization
,”
Marine Struct.
,
76
, p.
102904
.
15.
Chen
,
Y.
,
Ding
,
Y.
,
Hu
,
Z.-Z.
, and
Ren
,
Z.
,
2025
, “
Geometrized Task Scheduling and Adaptive Resource Allocation for Large-Scale Edge Computing in Smart Cities
,”
IEEE Int. Things J.
, pp.
1
1
.
16.
Nelli
,
F.
,
Derkani
,
M. H.
,
Alberello
,
A.
, and
Toffoli
,
A.
,
2023
, “
A Satellite Altimetry Data Assimilation Approach to Optimise Sea State Estimates From Vessel Motion
,”
Appl. Ocean Res.
,
132
, p.
103479
.
17.
Toffoli
,
A.
,
Alberello
,
A.
,
Clarke
,
H.
,
Nelli
,
F.
,
Benetazzo
,
A.
,
Bergamasco
,
F.
,
Ntamba
,
B. N.
,
Vichi
,
M.
, and
Onorato
,
M.
,
2024
, “
Observations of Rogue Seas in the Southern Ocean
,”
Phys. Rev. Lett.
,
132
(
15
), p.
154101
.
18.
Tu
,
F.
,
Ge
,
S. S.
,
Choo
,
Y. S.
, and
Hang
,
C. C.
,
2018
, “
Sea State Identification Based on Vessel Motion Response Learning Via Multi-layer Classifiers
,”
Ocean Eng.
,
147
, pp.
318
332
.
19.
Kawai
,
T.
,
Kawamura
,
Y.
,
Okada
,
T.
,
Mitsuyuki
,
T.
, and
Chen
,
X.
,
2021
, “
Sea State Estimation Using Monitoring Data by Convolutional Neural Network (CNN)
,”
J. Marine Sci. Technol.
,
26
(
3
), pp.
947
962
.
20.
Han
,
P.
,
Li
,
G.
,
Skjong
,
S.
,
Wu
,
B.
, and
Zhang
,
H.
,
2021
, “
Data-Driven Sea State Estimation for Vessels Using Multi-domain Features From Motion Responses
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
, pp.
2120
2126
.
21.
Li
,
S.
,
Cheng
,
X.
,
Shi
,
F.
,
Zhang
,
H.
,
Dai
,
H.
,
Zhang
,
H.
, and
Chen
,
S.
,
2024
, “
A Novel Robustness-Enhancing Adversarial Defense Approach to AI-Powered Sea State Estimation for Autonomous Marine Vessels
,”
IEEE Trans. Syst. Man Cybernet: Syst.
,
55
(
1
), pp.
28
42
.
22.
Han
,
P.
,
Li
,
G.
,
Skjong
,
S.
, and
Zhang
,
H.
,
2022
, “
Directional Wave Spectrum Estimation With Ship Motion Responses Using Adversarial Networks
,”
Marine Struct.
,
83
, p.
103159
.
23.
Zhang
,
T.
, and
Ren
,
Z.
,
2025
, “
Restricted Isometry Property in Wave Buoy Analogy and Application to Multispectral Fusion
,”
IEEE Trans. Intell. Transp. Syst.
,
26
(
2
), pp.
1999
2010
.
24.
Davenport
,
M. A.
,
Duarte
,
M. F.
,
Eldar
,
Y. C.
, and
Kutyniok
,
G.
,
2012
, “Introduction to Compressed Sensing,”
Compressed Sensing: Theory and Applications
,
G.
Kutyniok
, and
Y. C.
Eldar
, eds,
Cambridge University Press
,
Cambridge
, pp.
1
64
.
25.
Candès
,
E. J.
,
Romberg
,
J. K.
, and
Tao
,
T.
,
2006
, “
Stable Signal Recovery From Incomplete and Inaccurate Measurements
,”
Commun. Pure Appl. Math.
,
59
(
8
), pp.
1207
1223
.
You do not currently have access to this content.