Abstract

The sensitivity analysis using normalized sensitivity coefficient (NSC) can be used to identify important model parameters affecting the device performance by allowing one-to-one comparison. The results are highlighted in the form of order of magnitudes change in output for a unit change in input variable. In this study, the sensitivity analysis of a small capacity standing wave thermoacoustic refrigerator (SWTAR) has been performed using NSC. Specialized tool deltaec has been used to generate the results for the subsequent sensitivity analysis. Three key performance parameters, i.e., temperature difference achieved (ΔT), coefficient of performance (COP), and relative coefficient of performance (COPR) have been analyzed for perturbations in number of device variables, namely, oscillating pressure amplitude, two different stack material properties and four stack geometric parameters, i.e., stack length, stack center position, stack plate thickness, and half stack spacing. Sensitivity results are obtained for a wide range of mean operating pressures (Pm), mean operating temperature (Tm), and drive ratios (DRs). It has been found that performance parameters are most sensitive to the perturbations in oscillating pressure amplitude and least affected by the perturbations in the stack length. With respect to the oscillating pressure amplitude, maximum NSC of 24.12 has been reported for ΔT at mean pressure of 5 bar.

References

References
1.
Swift
,
G. W.
,
2017
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
,
Springer International Publishing
,
Melville, NY
.
2.
Swift
,
G. W.
,
1988
, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
84
(
4
), pp.
1145
1180
. 10.1121/1.396617
3.
Tijani
,
M. E. H.
,
Zeegers
,
J. C. H.
, and
de Waele
,
A. T. A. M.
,
2002
, “
Design of Thermoacoustic Refrigerators
,”
Cryogenics
,
42
(
1
), pp.
49
57
. 10.1016/S0011-2275(01)00179-5
4.
Babaei
,
H.
, and
Siddiqui
,
K.
,
2008
, “
Design and Optimization of Thermoacoustic Devices
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3585
3598
. 10.1016/j.enconman.2008.07.002
5.
Piccolo
,
A.
,
2013
, “
Optimization of Thermoacoustic Refrigerators Using Second Law Analysis
,”
Appl. Energy
,
103
, pp.
358
367
. 10.1016/j.apenergy.2012.09.044
6.
Ke
,
H.-B.
,
Liu
,
Y.-W.
,
He
,
Y.-L.
,
Wang
,
Y.
, and
Huang
,
J.
,
2010
, “
Numerical Simulation and Parameter Optimization of Thermo-Acoustic Refrigerator Driven at Large Amplitude
,”
Cryogenics
,
50
(
1
), pp.
28
35
. 10.1016/j.cryogenics.2009.10.005
7.
Hariharan
,
N. M.
,
Sivashanmugam
,
P.
, and
Kasthurirengan
,
S.
,
2013
, “
Optimization of Thermoacoustic Refrigerator Using Response Surface Methodology
,”
J. Hydrodyn. Ser. B
,
25
(
1
), pp.
72
82
. 10.1016/S1001-6058(13)60340-6
8.
Zolpakar
,
N. A.
, and
Mohd-Ghazali
,
N.
,
2019
, “
Comparison of a Thermoacoustic Refrigerator Stack Performance: Mylar Spiral, Celcor Substrates and 3D Printed Stacks
,”
Int. J. Air-Cond. Refrig.
,
27
(
3
), p.
1950021
. 10.1142/S2010132519500214
9.
Yahya
,
S. G.
,
Mao
,
X.
, and
Jaworski
,
A. J.
,
2017
, “
Experimental Investigation of Thermal Performance of Random Stack Materials for Use in Standing Wave Thermoacoustic Refrigerators
,”
Int. J. Refrig.
,
75
, pp.
52
63
. 10.1016/j.ijrefrig.2017.01.013
10.
Mergen
,
S.
,
Yıldırım
,
E.
, and
Turkoglu
,
H.
,
2019
, “
Numerical Study on Effects of Computational Domain Length on Flow Field in Standing Wave Thermoacoustic Couple
,”
Cryogenics
,
98
, pp.
139
147
. 10.1016/j.cryogenics.2018.09.012
11.
Piccolo
,
A.
,
Siclari
,
R.
,
Rando
,
F.
, and
Cannistraro
,
M.
,
2017
, “
Comparative Performance of Thermoacoustic Heat Exchangers With Different Pore Geometries in Oscillatory Flow. Implementation of Experimental Techniques
,”
Appl. Sci.
,
7
(
8
), p.
784
. 10.3390/app7080784
12.
Piccolo
,
A.
,
Sapienza
,
A.
, and
Guglielmino
,
C.
,
2019
, “
Convection Heat Transfer Coefficients in Thermoacoustic Heat Exchangers: An Experimental Investigation
,”
Energies
,
12
(
23
), p.
4525
. 10.3390/en12234525
13.
Mohd Saat
,
F.
, and
Jaworski
,
A.
,
2017
, “
The Effect of Temperature Field on Low Amplitude Oscillatory Flow Within a Parallel-Plate Heat Exchanger in a Standing Wave Thermoacoustic System
,”
Appl. Sci.
,
7
(
4
), p.
417
. 10.3390/app7040417
14.
Mohd Saat
,
F. A.
, and
and Jaworski
,
A. J.
,
2017
, “
Numerical Predictions of Early Stage Turbulence in Oscillatory Flow Across Parallel-Plate Heat Exchangers of a Thermoacoustic System
,”
Appl. Sci.
,
7
(
7
), p.
673
. 10.3390/app7070673
15.
Zolpakar
,
N. A.
,
Mohd-Ghazali
,
N.
, and
Ahmad
,
R.
,
2014
, “
Analysis of Increasing the Optimized Parameters in Improving the Performance of a Thermoacoustic Refrigerator
,”
Energy Procedia
,
61
, pp.
33
36
. 10.1016/j.egypro.2014.11.899
16.
Zolpakar
,
N. A.
,
Mohd-Ghazali
,
N.
, and
Ahmad
,
R.
,
2014
, “
Simultaneous Optimization of Four Parameters in the Stack Unit of a Thermoacoustic Refrigerator
,”
Int. J. Air-Cond. Refrig.
,
22
(
2
), p.
1450011
. 10.1142/S2010132514500114
17.
Peng
,
Y.
,
Feng
,
H.
, and
Mao
,
X.
,
2018
, “
Optimization of Standing-Wave Thermoacoustic Refrigerator Stack Using Genetic Algorithm
,”
Int. J. Refrig.
,
92
, pp.
246
255
. 10.1016/j.ijrefrig.2018.04.023
18.
Rahman
,
A. A.
, and
Zhang
,
X.
,
2019
, “
Single-Objective Optimization for Stack Unit of Standing Wave Thermoacoustic Refrigerator Through Particle Swarm Optimization Method
,”
Energy Procedia
,
158
, pp.
5445
5452
. 10.1016/j.egypro.2019.01.603
19.
Rao
,
R. V.
,
More
,
K. C.
,
Taler
,
J.
, and
Ocłoń
,
P.
,
2017
, “
Multi-Objective Optimization of Thermo-Acoustic Devices Using Teaching-Learning-Based Optimization Algorithm
,”
Sci. Technol. Built Environ.
,
23
(
8
), pp.
1244
1252
. 10.1080/23744731.2017.1296319
20.
Tartibu
,
L. K.
,
Sun
,
B.
, and
Kaunda
,
M. A. E.
,
2015
, “
Lexicographic Multi-Objective Optimization of Thermoacoustic Refrigerator’s Stack
,”
Heat Mass Transfer
,
51
(
5
), pp.
649
660
. 10.1007/s00231-014-1440-z
21.
Rahman
,
A. A.
, and
Zhang
,
X.
,
2019
, “
Single-Objective Optimization for Stack Unit of Standing Wave Thermoacoustic Refrigerator Through Fruit Fly Optimization Algorithm
,”
Int. J. Refrig.
,
98
, pp.
35
41
. 10.1016/j.ijrefrig.2018.09.031
22.
Tasnim
,
S.
,
Mahmud
,
S.
, and
Fraser
,
R.
,
2012
, “
Effects of Variation in Working Fluids and Operating Conditions on the Performance of a Thermoacoustic Refrigerator
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
762
768
. 10.1016/j.icheatmasstransfer.2012.04.013
23.
Skaria
,
M.
,
Abdul Rasheed
,
K. K.
,
Shafi
,
K. A.
,
Kasthurirengan
,
S.
, and
Behera
,
U.
,
2015
, “
Simulation Studies on the Performance of Thermoacoustic Prime Movers and Refrigerator
,”
Comput. Fluids
,
111
, pp.
127
136
. 10.1016/j.compfluid.2015.01.011
24.
Hussain
,
M. N.
, and
Janajreh
,
I.
,
2017
, “
Analysis of Pressure Wave Development in a Thermo-Acoustic Engine and Sensitivity Study
,”
Energy Procedia
,
142
, pp.
1488
1495
. 10.1016/j.egypro.2017.12.597
25.
Alamir
,
M.
,
Elnegiry
,
E.
, and
Eltahan
,
H.
,
2016
, “
Optimizing the Performance of a Standing Wave Loudspeaker Driven Thermoacoustic Heat Pump
,”
Int. J. Sci. Eng. Res.
,
7
(
9
), pp.
460
465
. 10.14299/ijser.2016.09.004
26.
Alamir
,
M. A.
, and
Elamer
,
A. A.
,
2018
, “
A Compromise Between the Temperature Difference and Performance in a Standing Wave Thermoacoustic Refrigerator
,”
Int. J. Ambient Energy
, pp.
1
13
. 10.1080/01430750.2018.1517673
27.
Jakub
,
K.
,
Artur
,
R.
, and
Andrzej
,
G.
,
2017
, “
The Influence of Stack Position and Acoustic Frequency on the Performance of Thermoacoustic Refrigerator With the Standing Wave
,”
Arch. Thermodyn.
,
38
(
4
), pp.
89
107
. 10.1515/aoter-2017-0026
28.
Xu
,
J.
,
Luo
,
E.
, and
Hochgreb
,
S.
,
2020
, “
Study on a Heat-Driven Thermoacoustic Refrigerator for Low-Grade Heat Recovery
,”
Appl. Energy
,
271
, p.
115167
. 10.1016/j.apenergy.2020.115167
29.
Rahpeima
,
R.
, and
Ebrahimi
,
R.
,
2019
, “
Numerical Investigation of the Effect of Stack Geometrical Parameters and Thermo-Physical Properties on Performance of a Standing Wave Thermoacoustic Refrigerator
,”
Appl. Therm. Eng.
,
149
, pp.
1203
1214
. 10.1016/j.applthermaleng.2018.12.093
30.
Kajurek
,
J.
,
Rusowicz
,
A.
, and
Grzebielec
,
A.
,
2019
, “
Design and Simulation of a Small Capacity Thermoacoustic Refrigerator
,”
SN Appl. Sci.
,
1
(
6
), p.
579
. 10.1007/s42452-019-0569-2
31.
de Jong
,
J. A.
,
Wijnant
,
Y. H.
,
de Boer
,
A.
, and
Wilcox
,
D.
,
2015
, “
Nonlinear Modeling of Thermoacoustic Systems
,”
Proceedings of the European Conference on Noise Control (EURONOISE)
,
Maastricht, Netherlands
,
May 31–June 3
, pp.
527
531
.
32.
Chen
,
B.
, and
Tong
,
L.
,
2004
, “
Sensitivity Analysis of Heat Conduction for Functionally Graded Materials
,”
Mater. Des.
,
25
(
8
), pp.
663
672
. 10.1016/j.matdes.2004.03.007
33.
James
,
C. A.
,
Taylor
,
R. P.
, and
Hodge
,
B. K.
,
1995
, “
The Application of Uncertainty Analysis to Cross-Flow Heat Exchanger Performance Predictions
,”
Heat Transfer Eng.
,
16
(
4
), pp.
50
62
. 10.1080/01457639508939863
34.
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2006
, “
A Comprehensive Design and Rating Study of Evaporative Coolers and Condensers. Part II. Sensitivity Analysis
,”
Int. J. Refrig.
,
29
(
4
), pp.
659
668
. 10.1016/j.ijrefrig.2005.09.015
35.
Malik
,
M. H.
,
Arif
,
A. F. M.
,
Al-Sulaiman
,
F. A.
, and
Khan
,
Z.
,
2013
, “
Impact Resistance of Composite Laminate Flat Plates—A Parametric Sensitivity Analysis Approach
,”
Compos. Struct.
,
102
, pp.
138
147
. 10.1016/j.compstruct.2013.02.030
36.
Kim
,
J. H.
,
Simon
,
T. W.
, and
Viskanta
,
R.
,
1993
, “
Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
5
6
. 10.1115/1.2910670
37.
Tartibu
,
L.
,
2019
, “
Developing More Efficient Travelling-Wave Thermo-Acoustic Refrigerators: A Review
,”
Sustainable Energy Tech. Assess.
,
31
, pp.
102
114
. 10.1016/j.seta.2018.12.004
38.
Zolpakar
,
N. A.
,
Mohd-Ghazali
,
N.
, and
Hassan El-Fawal
,
M.
,
2016
, “
Performance Analysis of the Standing Wave Thermoacoustic Refrigerator: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
626
634
. 10.1016/j.rser.2015.10.018
39.
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1999
,
Analysis and Design of Energy Systems
,
Prentice Hall
,
Upper Saddle River, NJ.
40.
Ardente
,
F.
,
Beccali
,
G.
,
Cellura
,
M.
, and
Brano
,
V. L.
,
2005
, “
Life Cycle Assessment of a Solar Thermal Collector: Sensitivity Analysis, Energy and Environmental Balances
,”
Renewable Energy
,
30
(
2
), pp.
109
130
. 10.1016/j.renene.2004.05.006
You do not currently have access to this content.