Abstract

The lubricating oil distribution significantly impacts the lubrication and cooling of the connecting rod small end bearing during the splash lubrication. This study investigates the oil supply for the small end bearing with splash lubrication utilizing the smoothed-particle hydrodynamics. The oil distribution and inlet volume are analyzed under various engine speeds. The results reveal that the oil moves close to the piston surface and hardly enters the oil bores, resulting in oil wastage. The oil entering the bores might be thrown out due to the inertia, causing the oil inlet volume to fluctuate. With increasing engine speeds, the total oil inlet volume under the quasi-steady-state gradually diminishes, exacerbating the lubrication conditions.

References

1.
Prasad
,
N. S.
,
Ganesh
,
N.
, and
Kumarasamy
,
A.
,
2017
, “
Technologies for High Power Density Diesel Engines
,”
Def. Sci. J.
,
67
(
4
), pp.
370
374
.
2.
Dong
,
L. H.
,
Liang
,
X. Y.
, and
Shu
,
G. Q.
,
2013
, “
The Influence of Lubricating Oil on Deposits Formation in a Diesel Engine Under the Operation Condition of High Power Density
,”
Lubr. Sci.
,
25
(
7
), pp.
441
451
.
3.
Beatrice
,
C.
,
Di Blasio
,
G.
, and
Belgiorno
,
G.
,
2017
, “
Experimental Analysis of Functional Requirements to Exceed the 100 kW/l in High-Speed Light-Duty Diesel Engines
,”
Fuel
,
207
, pp.
591
601
.
4.
Sun
,
S. C.
,
Yang
,
X.
,
Zhou
,
J. M.
,
Yang
,
J. G.
,
Cai
,
Y.
,
Xie
,
L. T.
, and
Hu
,
J.
,
2023
, “
Lubrication Analysis of Small-End Bearings of Reciprocating Engines Based on Orthogonal Experiment
,”
Appl. Sci.
,
13
(
6
), pp.
1
19
.
5.
Liu
,
J. L.
,
Xiang
,
J. H.
,
Qin
,
W. J.
, and
Zuo
,
Z. X.
,
2022
, “
Effect of Temperature Increase on the Looseness of Connecting Rod Small End Bushing
,”
Eng. Failure Anal.
,
138
, pp.
1
10
.
6.
Liu
,
Y. C.
,
Guessous
,
L.
,
Sangeorzan
,
B. P.
, and
Alkidas
,
A. C.
,
2015
, “
Laboratory Experiments on Oil-Jet Cooling of Internal Combustion Engine Pistons: Area-Average Correlation of Oil-Jet Impingement Heat Transfer
,”
J. Energ. Eng.
,
141
(
2
), pp.
1
10
.
7.
Zeng
,
X. R.
,
Zhang
,
J. H.
,
Li
,
L. M.
,
Hu
,
G. Y.
, and
Xie
,
W. M.
,
2022
, “
Research on the Flow Control of a Piston Cooling Nozzle
,”
Sci. Program. Neth.
,
2022
, pp.
1
9
.
8.
Strozzi
,
A.
,
Baldini
,
A.
,
Giacopini
,
M.
,
Bertocchi
,
E.
, and
Mantovani
,
S.
,
2016
, “
A Repertoire of Failures in Connecting Rods for Internal Combustion Engines, and Indications on Traditional and Advanced Design Methods
,”
Eng. Failure Anal.
,
60
, pp.
20
39
.
9.
Zhu
,
J.
,
Zhu
,
H.
,
Fan
,
S.
,
Xue
,
L.
, and
Li
,
Y.
,
2016
, “
A Study on the Influence of oil Film Lubrication to the Strength of Engine Connecting Rod Components
,”
Eng. Failure Anal.
,
63
, pp.
94
105
.
10.
Allmaier
,
H.
, and
Sander
,
D. E.
,
2020
, “
Piston-Pin Rotation and Lubrication
,”
Lubr.
,
8
(
3
), pp.
1
18
.
11.
Optasanu
,
V.
, and
Bonneau
,
D.
,
2000
, “
Finite Element Mass-Conserving Cavitation Algorithm in Pure Squeeze Motion. Validation/Application to a Connecting-Rod Small End Bearing
,”
ASME J. Tribol.
,
122
(
1
), pp.
162
169
.
12.
Concli
,
F.
,
2016
, “
Pressure Distribution in Small Hydrodynamic Journal Bearings Considering Cavitation: A Numerical Approach Based on the Open-Source CFD Code OpenFOAM®
,”
Lubr. Sci.
,
28
(
6
), pp.
329
347
.
13.
Narumi
,
Y.
,
Ishimoto
,
J.
,
Kanayama
,
D.
,
Kuribara
,
H.
, and
Nakano
,
Y.
,
2023
, “
Computational Fluid-Structure Interaction Analysis of Piston Pin Multiphase Elastohydrodynamic Lubrication With Unsteady Flow Channel Variation
,”
ASME J. Tribol.
,
145
(
2
), p. 021603.
14.
Moghe
,
S. S.
, and
Janowiak
,
S. M.
,
2017
, “
Large Eddy Simulation of Cylindrical Jet Simulation Results With Experimental Data
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p. 102811.
15.
Putintsev
,
S. V.
,
Pilatskaya
,
S. S.
,
Ratnikov
,
A. S.
, and
Ratnikov
,
A. S.
,
2019
, “
Visualization of Piston Engine Cylinder Oil-Jet Lubricating Process
,”
J. Phys.: Conf. Ser.
,
1177
, pp.
1
6
.
16.
Schmidt
,
M.
,
Reinke
,
P.
,
Rabanizada
,
A.
,
Umbach
,
S.
,
Rienacker
,
A.
,
Branciforti
,
D.
,
Philipp
,
U.
, et al
,
2020
, “
Numerical Study of the Three-Dimensional Oil Flow Inside a Wrist Pin Journal
,”
Tribol. Trans.
,
63
(
3
), pp.
415
424
.
17.
Gao
,
W.
,
Nelias
,
D.
,
Lyu
,
Y.
, and
Boisson
,
N.
,
2018
, “
Numerical Investigations on Drag Coefficient of Circular Cylinder With Two Free Ends in Roller Bearings
,”
Tribol. Int.
,
123
, pp.
43
49
.
18.
Maccioni
,
L.
,
Chernoray
,
V. G.
,
Mastrone
,
M. N.
,
Bohnert
,
C.
, and
Concli
,
F.
,
2022
, “
Study of the Impact of Aeration on the Lubricant Behavior in a Tapered Roller Bearing: Innovative Numerical Modelling and Validation via Particle Image Velocimetry
,”
Tribol. Int.
,
165
, p.
19
.
19.
Wingertszahn
,
P.
,
Koch
,
O.
,
Maccioni
,
L.
,
Concli
,
F.
, and
Sauer
,
B.
,
2023
, “
Predicting Friction of Tapered Roller Bearings With Detailed Multi-Body Simulation Models
,”
Lubr.
,
11
(
9
), p.
22
.
20.
Maccioni
,
L.
,
Chernoray
,
V. G.
,
Bohnert
,
C.
, and
Concli
,
F.
,
2022
, “
Particle Image Velocimetry Measurements Inside a Tapered Roller Bearing With an Outer Ring Made of Sapphire: Design and Operation of an Innovative Test rig
,”
Tribol. Int.
,
165
, p.
10
.
21.
Maccioni
,
L.
,
Chernoray
,
V. G.
, and
Concli
,
F.
,
2023
, “
Fluxes in a Full-Flooded Lubricated Tapered Roller Bearing: Particle Image Velocimetry Measurements and Computational Fluid Dynamics Simulations
,”
Tribol. Int.
,
188
, p.
13
.
22.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
2
), pp.
375
389
.
23.
Yang
,
X. F.
,
Peng
,
S. L.
, and
Liu
,
M. S.
,
2014
, “
A new Kernel Function for SPH With Applications to Free Surface Flows
,”
Appl. Math. Model.
,
38
(
15–16
), pp.
3822
3833
.
24.
Shadloo
,
M. S.
,
Zainali
,
A.
,
Yildiz
,
M.
, and
Suleman
,
A.
,
2012
, “
A Robust Weakly Compressible SPH Method and Its Comparison With an Incompressible SPH
,”
Int. J. Numer. Methods Eng.
,
89
(
8
), pp.
939
956
.
25.
Lee
,
E. S.
,
Moulinec
,
C.
,
Xu
,
R.
,
Violeau
,
D.
,
Laurence
,
D.
, and
Stansby
,
P.
,
2008
, “
Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method
,”
J. Comput. Phys.
,
227
(
18
), pp.
8417
8436
.
26.
Hughes
,
J. P.
, and
Graham
,
D. I.
,
2010
, “
Comparison of Incompressible and Weakly-Compressible SPH Models for Free-Surface Water Flows
,”
J. Hydraul. Res.
,
48
(
sup 1
), pp.
105
117
.
27.
Concli
,
F.
,
Schaefer
,
C. T.
, and
Bohnert
,
C.
,
2020
, “
Innovative Meshing Strategies for Bearing Lubrication Simulations
,”
Lubr.
,
8
(
4
).
28.
Ihmsen
,
M.
,
Cornelis
,
J.
,
Solenthaler
,
B.
,
Horvath
,
C.
, and
Teschner
,
M.
,
2014
, “
Implicit Incompressible SPH
,”
IEEE Trans. Vis. Comput. Gr.
,
20
(
3
), pp.
426
435
.
29.
Tartakovsky
,
A.
, and
Meakin
,
P.
,
2005
, “
Modeling of Surface Tension and Contact Angles With Smoothed Particle Hydrodynamics
,”
Phys. Rev. E
,
72
(
2
), pp.
1
19
.
30.
Morris
,
J. P.
,
Fox
,
P. J.
, and
Yi
,
Z.
,
1997
, “
Modeling Low Reynolds Number Incompressible Flows Using SPH
,”
J. Comput. Phys.
,
136
(
1
), pp.
214
226
.
31.
Monaghan
,
J. J.
,
1988
, “
An Introduction to SPH
,”
Comput. Phys. Commun.
,
48
(
1
), pp.
89
96
.
32.
Di Monaco
,
A.
,
Manenti
,
S.
,
Gallati
,
M.
,
Sibilla
,
S.
,
Agate
,
G.
, and
Guandalini
,
R.
,
2011
, “
SPH Modeling of Solid Boundaries Through a Semi-Analytic Approach
,”
Eng. Appl. Comp. Fluid
,
5
(
1
), pp.
1
15
.
33.
Ferrari
,
A.
,
Dumbser
,
M.
,
Toro
,
E. F.
, and
Armanini
,
A.
,
2009
, “
A New 3D Parallel SPH Scheme for Free Surface Flows
,”
Comput. Fluids
,
38
(
6
), pp.
1203
1217
.
34.
Monaghan
,
J. J.
, and
Kajtar
,
J. B.
,
2009
, “
SPH Particle Boundary Forces for Arbitrary Boundaries
,”
Comput. Phys. Commun.
,
180
(
10
), pp.
1811
1820
.
35.
Offner
,
G.
,
Diwoky
,
F.
,
Schweiger
,
C.
, and
Baier
,
W.
,
2013
, “
Coupled Oil Film Lubricated Contact Simulation for ICEs
,”
Proc. Inst. Mech. Eng. J.: J. Eng.
,
227
(
J5
), pp.
447
458
.
36.
Offner
,
G.
,
2013
, “
Friction Power Loss Simulation of Internal Combustion Engines Considering Mixed Lubricated Radial Slider, Axial Slider and Piston to Liner Contacts
,”
Tribol. Trans.
,
56
(
3
), pp.
503
515
.
37.
He
,
Z. P.
,
Sun
,
Y. G.
,
Zhang
,
G. C.
,
Hong
,
Z. Y.
,
Xie
,
W. S.
,
Lu
,
X.
, and
Zhang
,
J. H.
,
2015
, “
Tribilogical Performances of Connecting Rod and by Using Orthogonal Experiment, Regression Method and Response Surface Methodology
,”
Appl. Soft. Comput.
,
29
, pp.
436
449
.
38.
Amjadi
,
M.
,
Pichitpajongkit
,
A.
,
Lee
,
S.
,
Ryu
,
S.
, and
Park
,
I.
,
2014
, “
Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite
,”
ACS Nano
,
8
(
5
), pp.
5154
5163
.
You do not currently have access to this content.