Abstract

The slow progress in the prediction of elastohydrodynamic film thickness and friction may be attributed to the mistaken notion that a traction curve is equivalent to a rheological flow curve. A similar concept is being standardized by the Society of Automotive Engineers (SAE) for the traction coefficient of aerospace oils. Four standards teach that traction coefficient is an inherent physical property of oil and that full-film traction does not depend upon the roller material and that there can be traction measurements, which do not depend on the test rig. These traction coefficients are to be employed in models for thermal management analyses without the need for measuring primary properties. Through example calculations, using primary properties of turbine oil, it is shown here that elastohydrodynamic lubrication (EHL) friction is not a property of the liquid alone, and that it depends on at least two contact characteristics as well, namely, the aspect ratio and scale. Within the tribology literature, there is much evidence of the dependence of EHL friction on other contact parameters as well that are not characteristic of the fluid.

References

1.
Johnson
,
K. L.
, and
Tevaarwerk
,
J. L.
,
1977
, “
Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. A: Math. Phys. Sci.
,
356
(
1685
), pp.
215
236
.
2.
Bair
,
S.
,
2019
, “
The Rheological Assumptions of Classical EHL: What Went Wrong?
,”
Tribol. Int.
,
131
, pp.
45
50
.
3.
Houpert
,
L.
,
1985
, “
New Results of Traction Force Calculations in Elastohydrodynamic Contacts
,”
ASME J. Tribol.
,
107
(
2
), p.
241
245
.
4.
Bair
,
S.
,
2022
, “
A Traction (Friction) Curve Is Not a Flow Curve
,”
Lubricants
,
10
(
9
), p.
221
.
5.
Aerospace Standard AS5780D
,
2018
, “Core Requirement Specification for Aircraft Gas Turbine Engine Lubricants,”
Society of Automotive Engineers
,
Warrendale, PA
.
6.
Aerospace Information Report AIR6056A
,
2024
, “Gas Turbine Engine Lubricant Specifications: Current Technical Review and Future Direction,”
Society of Automotive Engineers
,
Warrendale, PA
.
7.
Aerospace Information Report AIR5433 Revision C
,
2019
, “Lubricating Characteristics and Typical Properties of Lubricants Used in Aviation Propulsion and Drive Systems,”
Society of Automotive Engineers
,
Warrendale, PA
.
8.
Aerospace Recommended Practice ARP6243
,
2024
, “Traction Coefficient Measurement,”
Society of Automotive Engineers
,
Warrendale, PA
.
9.
Liu
,
H. C.
,
Zhang
,
B. B.
,
Bader
,
N.
,
Venner
,
C. H.
, and
Poll
,
G.
,
2021
, “
Scale and Contact Geometry Effects on Friction in Thermal EHL: Twin-Disc Versus Ball-on-Disc
,”
Tribol. Int.
,
154
, p.
106694
.
10.
Bair
,
S.
, and
Kotzalas
,
M.
,
2006
, “
The Contribution of Roller Compliance to Elastohydrodynamic Traction
,”
Tribol. Trans.
,
49
(
2
), pp.
218
224
.
11.
Habchi
,
W.
,
Bair
,
S.
, and
Vergne
,
P.
,
2013
, “
On Friction Regimes in Quantitative Elastohydrodynamics
,”
Tribol. Int.
,
58
, pp.
107
117
.
12.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2014
, “
Friction Reduction in Elastohydrodynamic Contacts by Thin-Layer Thermal Insulation
,”
Tribol. Lett.
,
53
(
2
), pp.
477
486
.
13.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,”
Tribol. Int.
,
43
(
10
), pp.
1842
1850
.
14.
Schurz
,
J.
,
Vollrath-Rödiger
,
M.
, and
Krässig
,
H.
,
1981
, “
Rheologische Untersuchungen an Polyacrylnitril-Spinnlösungen: Erweiterung des Viskosimeters HV 6 Für Höhere Temperaturen
,”
Rheol. Acta
,
20
(
6
), pp.
569
578
.
15.
Håkansson
,
B.
,
Andersson
,
P.
, and
Bäckström
,
G.
,
1988
, “
Improved Hot-Wire Procedure for Thermophysical Measurements Under Pressure
,”
Rev. Sci. Instrum.
,
59
(
10
), pp.
2269
2275
.
16.
Bair
,
S.
,
2014
, “
Density Scaling of the Thermal Conductivity of a Jet Oil
,”
Tribol. Trans.
,
57
(
4
), pp.
647
652
.
17.
Habchi
,
W.
,
2018
,
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
,
Wiley
,
Chichester, UK
.
18.
Habchi
,
W.
,
2017
, “
Coupling Strategies for Finite Element Modeling of Thermal Elastohydrodynamic Lubrication Problems
,”
ASME J. Tribol.
,
139
(
4
), p.
041501
.
19.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G. E.
,
2012
, “
Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Software
,
46
(
1
), pp.
4
18
.
20.
Wu
,
S. R.
,
1986
, “
A Penalty Formulation and Numerical Approximation of the Reynolds-Hertz Problem of Elastohydrodynamic Lubrication
,”
Int. J. Eng. Sci.
,
24
(
6
), pp.
1001
1013
.
21.
Bair
,
S.
, and
Habchi
,
W.
,
2024
, “
Effects of a Typical Shear Dependent Viscosity on EHL Film Analytical Thickness Predictions: A Critical Issue for the Classical Approach
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
238
(
5
), pp.
521
528
.
22.
Bjorling
,
M.
,
Isaksson
,
P.
,
Marklund
,
P.
, and
Larsson
,
R.
,
2012
, “
The Influence of DLC Coating on EHL Friction Coefficient
,”
Tribol. Lett
,
47
(
2
), pp.
285
294
.
23.
Kaneta
,
M.
,
Yang
,
P.
, and
Hooke
,
C. J.
,
2010
, “
Effects of the Thermal Conductivity of Contact Materials on Elastohydrodynamic Lubrication Characteristics
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
224
(
12
), pp.
2577
2587
.
24.
Habchi
,
W.
,
2016
, “
Thermal Analysis of Friction in Coated Elastohydrodynamic Circular Contacts
,”
Tribol. Int.
,
93
(
Part B
), pp.
530
538
.
25.
Habchi
,
W.
,
2015
, “
Influence of Thermo-Mechanical Properties of Coatings on Friction in Elastohydrodynamic Lubricated Contacts
,”
Tribol. Int.
,
90
, pp.
113
122
.
26.
Kalin
,
M.
,
Velkavrh
,
I.
, and
Viintin
,
J.
,
2009
, “
The Stribeck Curve and Lubrication Design for Non-Fully Wetted Surfaces
,”
Wear
,
267
(
5–8
), pp.
1232
1240
.
27.
Bjorling
,
M.
,
Larsson
,
R.
,
Marklund
,
P.
, and
Kassfeldt
,
E.
,
2011
, “
Elastohydrodynamic Lubrication Friction Mapping: The Influence of Lubricant, Roughness, Speed, and Slide-to-Roll Ratio
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
225
(
7
), pp.
671
681
.
28.
Sadinski
,
R. J.
,
2022
, “
The Pressure and Temperature Dependency of Relative Volume, Low Shear Viscosity, and Non-Newtonian High Shear Viscosity in SAE AS5780 HPC, MIL-PRF-23699 HTS, and DOD-PRF-85734 Lubricants
,”
Tribol. Trans.
,
65
(
5
), pp.
924
941
.
You do not currently have access to this content.