Abstract

As the performance and efficiency requirements of electric vehicles (EVs) continue to expand, the demand for advanced driveline lubricants has grown exponentially. Unlike traditional internal combustion engine (ICE) vehicles, EVs experience unique challenges, including increased acceleration and deceleration rates, immediate torque delivery, higher operating speeds, and elevated drivetrain temperatures. Moreover, EV lubricants must endure exposure to damaging bearing currents, which can lead to morphological damage on bearing surfaces, such as electrical pitting. Addressing these challenges is critical to ensuring the longevity and reliability of EV components. This study aims to explore and validate innovative lubricant solutions tailored explicitly for EV applications. This work provides experimental validation of the capabilities of silver (Ag) and different concentrations of magnetic iron-oxide nanoparticles (NPs) in reducing damage through reciprocating rolling ball-on-disk tests. Additionally, an electrically conductive carbon black lithium-thickened grease was tested under comparable conditions. The significance of this research lies in its potential to revolutionize the EV lubricant industry by offering a robust solution to a prevalent problem. Successful implementation of nanoparticle-enhanced lubricants could lead to increased durability and efficiency of EV drivetrains, reducing maintenance costs and improving overall vehicle performance. This advancement aligns with the evolving demands of the EV market and sets a new standard for lubricant technology in electrified mobility.

References

1.
IEA
, “Global EV Outlook 2023—Analysis.” https://www.iea.org/reports/global-ev-outlook-2023. Accessed October 03, 2023.
2.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2019
, “
The Impact of Tribology on Energy Use and CO2 Emission Globally and in Combustion Engine and Electric Cars
,”
Tribol. Int.
,
135
, pp.
389
396
.
3.
Canter
,
N.
,
2023
, “
2nd Tribology and Lubrication for E-Mobility
,”
Proceedings of the 2nd STLE Conference on Electric Vehicles, STLE
,
San Antonio, TX
,
October
, p.
57
.
4.
Hamidizadeh
,
S.
,
Alatawneh
,
N.
,
Chromik
,
R. R.
, and
Lowther
,
D. A.
,
2016
, “
Comparison of Different Demagnetization Models of Permanent Magnet in Machines for Electric Vehicle Application
,”
IEEE Trans. Magn.
,
52
(
5
), pp.
1
4
.
5.
Sebastian
,
T.
,
1993
, “
Temperature Effects on Torque Production and Efficiency of PM Motors Using NdFeB Magnets
,”
Proceedings of the 1993 IEEE Industry Applications Conference: Twenty-Eighth IAS Annual Meeting
,
Toronto, ON, Canada
,
Oct. 2–8
, pp. 78–83, Vol. 1.
6.
Lugt
,
P. M.
,
2016
, “
Modern Advancements in Lubricating Grease Technology
,”
Tribol. Int.
,
97
, pp.
467
477
.
7.
G
,
H.
,
B
,
S.
, and
Bhat
,
A.
,
2021
, “
Hybrid and Electric Vehicle Tribology: A Review
,”
Surf. Topogr. Metrol. Prop.
,
9
(
4
), p.
043001
.
8.
Gurt
,
A.
, and
Khonsari
,
M. M.
,
2021
, “
Testing Grease Consistency
,”
Lubricants
,
9
(
2
), p.
14
. Art. no. 2.
9.
Gonda
,
A.
,
Capan
,
R.
,
Bechev
,
D.
, and
Sauer
,
B.
,
2019
, “
The Influence of Lubricant Conductivity on Bearing Currents in the Case of Rolling Bearing Greases
,”
Lubricants
,
7
(
12
), p.
12
.
10.
Jackson
,
R. L.
,
Coker
,
A. B.
,
Tucker
,
Z.
,
Hossain
,
M. S.
, and
Mills
,
G.
,
2019
, “
An Investigation of Silver-Nanoparticle-Laden Lubricants for Electrical Contacts
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
2
), pp.
193
200
.
11.
Minami
,
I.
,
2017
, “
Molecular Science of Lubricant Additives
,”
Appl. Sci.
,
7
(
5
), p.
5
.
12.
Jablonka
,
K.
,
Glovnea
,
R.
,
Bongaerts
,
J.
, and
Morales-Espejel
,
G.
,
2013
, “
The Effect of the Polarity of the Lubricant Upon Capacitance Measurements of EHD Contacts
,”
Tribol. Int.
,
61
, pp.
95
101
.
13.
Gahagan
,
M. P.
,
2017
, “
Lubricant Technology for Hybrid Electric Automatic Transmissions
,”
SAE International, Warrendale, PA,
SAE Technical Paper No. 2017-01–2358
14.
Janik
,
J. R.
,
Saha
,
S.
,
Jackson
,
R. L.
, and
Mills
,
G.
,
2024
, “
Exploring the Boundaries of Electrically Induced Bearing Damage in Grease-Lubricated Rolling Contacts
,”
Lubricants
,
12
(
8
), p.
8
.
15.
Li
,
B.
,
Wang
,
X.
,
Liu
,
W.
, and
Xue
,
Q.
,
2006
, “
Tribochemistry and Antiwear Mechanism of Organic–Inorganic Nanoparticles as Lubricant Additives
,”
Tribol. Lett.
,
22
(
1
), pp.
79
84
.
16.
Liu
,
G.
,
Li
,
X.
,
Qin
,
B.
,
Xing
,
D.
,
Guo
,
Y.
, and
Fan
,
R.
,
2004
, “
Investigation of the Mending Effect and Mechanism of Copper Nanoparticles on a Tribologically Stressed Surface
,”
Tribol. Lett.
,
17
(
4
), pp.
961
966
.
17.
“The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive—IOPscience.” https://iopscience.iop.org/article/10.1088/0022-3727/29/11/029, Accessed April 18, 2024.
18.
Greenberg
,
R.
,
Halperin
,
G.
,
Etsion
,
I.
, and
Tenne
,
R.
,
2004
, “
The Effect of WS2 Nanoparticles on Friction Reduction in Various Lubrication Regimes
,”
Tribol. Lett.
,
17
(
2
), pp.
179
186
.
19.
Hernández Battez
,
A.
,
González
,
R.
,
Viesca
,
J. L.
,
Fernández
,
J. E.
,
Díaz Fernández
,
J. M.
,
Machado
,
A.
,
Chou
,
R.
, and
Riba
,
J.
,
2008
, “
CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants
,”
Wear
,
265
(
3–4
), pp.
422
428
.
20.
Hernández Battez
,
A.
,
Viesca
,
J. L.
,
González
,
R.
,
Blanco
,
D.
,
Asedegbega
,
E.
, and
Osorio
,
A.
,
2010
, “
Friction Reduction Properties of a CuO Nanolubricant Used as Lubricant for a NiCrBSi Coating
,”
Wear
,
268
(
1
), pp.
325
328
.
21.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lapsker
,
I.
,
Volovik
,
Y.
,
Nepomnyashchy
,
O.
,
Lvovsky
,
M.
,
Popovitz-Biro
,
R.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
2003
, “
Tribological Properties of WS2 Nanoparticles Under Mixed Lubrication
,”
Wear
,
255
(
7
), pp.
785
793
.
22.
Zhang
,
M.
,
Wang
,
X.
,
Fu
,
X.
, and
Xia
,
Y.
,
2009
, “
Performance and Anti-Wear Mechanism of CaCO3 Nanoparticles as a Green Additive in Poly-Alpha-Olefin
,”
Tribol. Int.
,
42
(
7
), pp.
1029
1039
.
23.
Zhang
,
M.
,
Wang
,
X.
,
Liu
,
W.
, and
Fu
,
X.
,
2009
, “
Performance and Anti-Wear Mechanism of Cu Nanoparticles as Lubricating Oil Additives
,”
Ind. Lubr. Tribol.
,
61
(
6
), pp.
311
318
.
24.
“Self-Dispersed Crumpled Graphene Balls in Oil for Friction and Wear Reduction,” Proc. Natl. Acad. Sci. U.S.A.. https://www.pnas.org/doi/abs/10.1073/pnas.1520994113, Accessed April 18, 2024.
25.
Martin
,
J. M.
, and
Ohmae
,
N.
,
2008
,
Nanolubricants
,
John Wiley & Sons, Ltd
,
Chichester, UK
, pp.
i
xi
.
26.
Gara
,
L.
, and
Zou
,
Q.
,
2013
, “
Friction and Wear Characteristics of Oil-Based ZnO Nanofluids
,”
Tribol. Trans.
,
56
(
2
), pp.
236
244
.
27.
Shenderova
,
O.
,
Vargas
,
A.
,
Turner
,
S.
,
Ivanov
,
D. M.
, and
Ivanov
,
M. G.
,
2014
, “
Nanodiamond-Based Nanolubricants: Investigation of Friction Surfaces
,”
Tribol. Trans.
,
57
(
6
), pp.
1051
1057
.
28.
Novak
,
C.
,
Kingman
,
D.
,
Stern
,
K.
,
Zou
,
Q.
, and
Gara
,
L.
,
2014
, “
Tribological Properties of Paraffinic Oil With Nanodiamond Particles
,”
Tribol. Trans.
,
57
(
5
), pp.
831
837
.
29.
Zhao
,
J.
,
Huang
,
Y.
,
He
,
Y.
, and
Shi
,
Y.
,
2021
, “
Nanolubricant Additives: A Review
,”
Friction
,
9
(
5
), pp.
891
917
.
30.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.
31.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Xue
,
Q.
,
2000
, “
Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil
,”
Tribol. Lett.
,
8
, pp.
213
218
.
32.
Bakunin
,
V. N.
,
Kuzmina
,
G. N.
,
Kasrai
,
M.
,
Parenago
,
O. P.
, and
Bancroft
,
G. M.
,
2006
, “
Tribological Behavior and Tribofilm Composition in Lubricated Systems Containing Surface-Capped Molybdenum Sulfide Nanoparticles
,”
Tribol. Lett.
,
22
(
3
), pp.
289
296
.
33.
Yu
,
H. L.
,
Xu
,
Y.
,
Shi
,
P. J.
,
Xu
,
B. S.
,
Wang
,
X. L.
,
Liu
,
Q.
, and
Wang
,
H. M.
,
2008
, “
Characterization and Nano-Mechanical Properties of Tribofilms Using Cu Nanoparticles as Additives
,”
Surf. Coat. Technol.
,
203
(
1
), pp.
28
34
.
34.
Sivanandini
,
M.
,
Dhami
,
M. K.
,
Dhami
,
S. S.
, and
Pabla
,
B. S.
,
2014
, “
Enhancement in Surface Finish by Modification of Basic Colloidal Silica With Silane in Chemical Mechanical Polishing
,”
ECS J. Solid State Sci. Technol.
,
3
(
10
), pp.
P324
P329
.
35.
Ahmed Abdalglil Mustafa
,
W.
,
Dassenoy
,
F.
,
Sarno
,
M.
, and
Senatore
,
A.
,
2022
, “
A Review on Potentials and Challenges of Nanolubricants as Promising Lubricants for Electric Vehicles
,”
Lubr. Sci.
,
34
(
1
), pp.
1
29
.
36.
Suzumura
,
J.
,
2016
, “
Prevention of Electrical Pitting on Rolling Bearings by Electrically Conductive Grease
,”
Q. Rep. RTRI
,
57
(
1
), pp.
42
47
.
37.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
, pp.
88
98
.
38.
Ghaednia
,
H.
, and
Jackson
,
R. L.
,
2013
, “
The Effect of Nanoparticles on the Real Area of Contact, Friction, and Wear
,”
ASME J. Tribol.
,
135
(
4
), p.
041603
.
39.
Bond
,
S.
,
Jackson
,
R. L.
, and
Mills
,
G.
,
2024
, “
The Influence of Various Grease Compositions and Silver Nanoparticle Additives on Electrically Induced Rolling-Element Bearing Damage
,”
Friction
,
12
, pp.
796
811
.
40.
Wang
,
J.
,
Guo
,
Z.
,
Hu
,
W.
,
Lu
,
H.
, and
Li
,
J.
,
2024
, “
Investigating the Effects of Base Oil Type on Microstructure and Tribological Properties of Polyurea Grease
,”
Tribol. Int.
,
194
, p.
109573
.
41.
Crilly
,
L.
,
Jackson
,
R. L.
,
Mills
,
G.
,
Bond
,
S.
, and
Bhargava
,
S.
,
2022
, “
An Exploration of the Friction, Wear, and Electrical Effects of Nanoparticle Enhanced and Conventional Lubricants
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
12
(
11
), pp.
1757
1770
.
42.
Darvin
,
J. R.
,
Hossain
,
M. S.
,
Nabil
,
M.
,
Uertz
,
J.
, and
Mills
,
G.
,
2019
, “
Concentrated Ag Nanoparticles in Dodecane as Phase Change Materials for Thermal Energy Storage
,”
ACS Appl. Nano Mater.
,
2
(
10
), pp.
6187
6196
.
43.
“EMG Series—Oil-Based Audio FerrofluidType: EMG-900,” Ferrofluid.https://ferrofluid.ferrotec.com/products/ferrofluid-emg/oil/emg-900/, Accessed May 07, 2024
44.
Bond
,
S.
,
Jackson
,
R. L.
, and
Mills
,
G.
,
2023
, “
Electrified Mechanical Contact Arcing Surface Damage and Reduction by Silver Nanoparticle Enhanced Greases
,”
Proceedings of the 2023 IEEE 68th Holm Conference on Electrical Contacts (HOLM)
,
Seattle, WA
, pp.
1
8
.
45.
Jackson
,
R. L.
,
Saha
,
S.
, and
Janik
,
J. R.
,
2024
, “
A Statistical Prediction of Electrical Discharge Initiation and Semi-Analytical Transient Mixed Lubrication Model of a Rolling Element
,”
ASME J. Tribol.
,
147
, pp.
1
27
.
46.
Itai
,
R.
,
Shibuya
,
M.
,
Matsumura
,
T.
, and
Ishi
,
G.
,
1971
, “
Electrical Resistivity of Magnetite Anodes
,”
J. Electrochem. Soc.
,
118
(
10
), p.
1709
.
47.
“D217 Standard Test Methods for Cone Penetration of Lubricating Grease.”https://www.astm.org/d0217-21a.html. Accessed January 11, 2024.
48.
Mezger
,
T. G.
,
2014
,
Applied Rheology with Joe Flow on Rheology Road
, 5th ed.,
Anton Paar GmbH
,
Austria
.
49.
Gurt
,
A.
, and
Khonsari
,
M.
,
2023
, “
Comparison of Rheological Methods to Measure Grease Degradation
,”
Lubricants
,
11
(
11
), p.
468
.
50.
Scarlett
,
N. A.
,
1967
, “
Paper 21: Use of Grease in Rolling Bearings
,”
Proc. Inst. Mech. Eng. Conf. Proc.
,
182
(
1
), pp.
585
624
.
51.
Zhang
,
X.
, and
Glovnea
,
R.
,
2021
, “
Grease Film Thickness Measurement in Rolling Bearing Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
7
), pp.
1430
1439
.
52.
Åström
,
H.
,
1992
, “
Irregular Film Thickness Fluctuations in Elastohydrodynamic Lubrication of a Point Contact Lubricated With Lubricating Grease
,”
Tribologia
,
11
(
4
), pp.
179
184
.
53.
Cann
,
P. M.
,
Webster
,
M. N.
,
Doner
,
J. P.
,
Wikstrom
,
V.
, and
Lugt
,
P.
,
2007
, “
Grease Degradation in R0F Bearing Tests
,”
Tribol. Trans.
,
50
(
2
), pp.
187
197
.
54.
Zhang
,
S.
,
Klinghart
,
B.
,
Jacobs
,
G.
,
von Goeldel
,
S.
, and
König
,
F.
,
2024
, “
Prediction of Bleeding Behavior and Film Thickness Evolution in Grease Lubricated Rolling Contacts
,”
Tribol. Int.
,
193
, p.
109369
.
55.
Cann
,
P. M.
,
Williamson
,
B. P.
,
Coy
,
R. C.
, and
Spikes
,
H. A.
,
1992
, “
The Behaviour of Greases in Elastohydrodynamic Contacts
,”
J. Phys. D: Appl. Phys.
,
25
(
1A
), pp.
A124
A132
.
56.
Åström
,
H.
,
Östensen
,
J. O.
, and
Höglund
,
E.
,
1993
, “
Lubricating Grease Replenishment in an Elastohydrodynamic Point Contact
,”
ASME J. Tribol.
,
115
(
3
), pp.
501
506
.
You do not currently have access to this content.