Abstract

The article examines the dynamic characteristics of porous air bearings in the critical pneumatic hammer state (the transition state from the steady state to the pneumatic hammer state). The dynamic characteristics mainly include the critical load (film load capacity) and the critical frequency (vibration frequency) of the bearings. This study presents two fluid domain models: the first model depicts flow channels with annular grooves for air supply (annular grooved model), while the second model does not include annular grooves (nongrooved model). The effects of bearing permeability and air supply pressure are analyzed. Numerical simulation results show that the critical loads and the critical frequencies in the annular grooved model are quite different from those in the nongrooved model. When the permeability is 1.33 × 10−14 m2 and the supply pressures are 400 kPa, 450 kPa, and 500 kPa, the critical loads in the annular groove model are 54.5 N, 48.9 N, and 45.9 N, while the critical loads in the nongrooved model are 42 N, 52.5 N, and 68 N. Reducing the permeability of the air bearing significantly increases the critical load and the critical frequency. Finally, an experimental facility is set up to investigate the critical load and the critical frequency of the air bearings. The critical loads in the experiment are 59.1 N, 52.5 N, and 49.3 N. The fluid domain model's and solution method's accuracy has been confirmed. The simulation results of the annular grooved model are closer to the experimental results.

References

1.
Larsen
,
J. S.
,
Hansen
,
A. J. T.
, and
Santos
,
I. F.
,
2015
, “
Experimental and Theoretical Analysis of a Rigid Rotor Supported by Air Foil Bearings
,”
Mech. Ind.
,
16
(
1
), p.
106
.
2.
Ise
,
T.
,
Nakatsuka
,
M.
,
Nagao
,
K.
,
Matsubara
,
M.
,
Kawamura
,
S.
,
Asami
,
T.
,
Kinugawa
,
T.
, and
Nishimura
,
K.
,
2017
, “
Externally Pressurized Gas Journal Bearing With Slot Restrictors Arranged in the Axial Direction
,”
Precis. Eng.
,
50
, pp.
286
292
.
3.
Chen
,
G. D.
,
Sun
,
Y. Z.
,
Zhang
,
F. H.
,
Lu
,
L. H.
,
Chen
,
W. Q.
, and
Yu
,
N.
,
2018
, “
Dynamic Accuracy Design Method of Ultra-Precision Machine Tool
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
011702
.
4.
Kobayashi
,
T.
, and
Yabe
,
H.
,
2005
, “
Numerical Analysis of a Coupled Porous Journal and Thrust Bearing System
,”
ASME J. Tribol.
,
127
(
1
), pp.
120
129
.
5.
Leach
,
R. K.
,
Flack
,
D. R.
,
Hughes
,
E. B.
, and
Jones
,
C. W.
,
2009
, “
Development of a New Traceable Areal Surface Texture Measuring Instrument
,”
Wear
,
266
(
5–6
), pp.
552
554
.
6.
Jiang
,
S.
,
Lin
,
S.
, and
Xu
,
C.
,
2017
, “
Static and Dynamic Characteristics of Externally Pressurized Porous Gas Journal Bearing With Four Degrees-of-Freedom
,”
ASME J. Tribol.
,
140
(
1
), p.
011702
.
7.
Grossman
,
R. L.
,
1963
, “
Application of Flow and Stability Theory to the Design of Externally Pressurized Spherical Gas Bearings
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
495
502
.
8.
Schenk
,
C.
,
Buschmann
,
S.
,
Risse
,
S.
,
Eberhardt
,
R.
, and
Tünnermann
,
A.
,
2008
, “
Comparison Between Flat Aerostatic Gas-Bearing Pads With Orifice and Porous Feedings at High-Vacuum Conditions
,”
Precis. Eng.
,
32
(
4
), pp.
319
328
.
9.
Kwan
,
Y. B. P.
, and
Corbett
,
J.
,
1998
, “
Porous Aerostatic Bearings—An Updated Review
,”
Wear
,
222
(
2
), pp.
69
73
.
10.
Tian
,
Y.
,
1998
, “
Static Study of the Porous Bearings by the Simplified Finite Element Analysis
,”
Wear
,
218
(
2
), pp.
203
209
.
11.
Zhang
,
S. J.
,
To
,
S.
, and
Wang
,
H. T.
,
2013
, “
A Theoretical and Experimental Investigation Into Five-DOF Dynamic Characteristics of an Aerostatic Bearing Spindle in Ultra-Precision Diamond Turning
,”
Int. J. Mach. Tool. Manuf.
,
71
, pp.
1
10
.
12.
An
,
C. H.
,
Zhang
,
Y.
,
Xu
,
Q.
,
Zhang
,
F. H.
,
Zhang
,
J. F.
,
Zhang
,
L. J.
, and
Wang
,
J. H.
,
2010
, “
Modeling of Dynamic Characteristic of the Aerostatic Bearing Spindle in an Ultra-Precision Fly Cutting Machine
,”
Int. J. Mach. Tool. Manuf.
,
50
(
4
), pp.
374
385
.
13.
Zhang
,
S. J.
, and
To
,
S.
,
2013
, “
A Theoretical and Experimental Study of Surface Generation Under Spindle Vibration in Ultra-Precision Raster Milling
,”
Int. J. Mach. Tool. Manuf.
,
75
, pp.
36
45
.
14.
Zhang
,
S. J.
,
To
,
S.
,
Cheung
,
C. F.
, and
Wang
,
H. T.
,
2012
, “
Dynamic Characteristics of an Aerostatic Bearing Spindle and Its Influence on Surface Topography in Ultra-Precision Diamond Turning
,”
Int. J. Mach. Tool. Manuf.
,
62
, pp.
1
12
.
15.
Li
,
W.
,
Zhou
,
Z. X.
,
Huang
,
X. M.
,
He
,
Z. J.
, and
Du
,
Y.
,
2014
, “
Development of a High-Speed and Precision Micro-Spindle for Micro-Cutting
,”
Int. J. Precis. Eng. Manuf.
,
15
(
11
), pp.
2375
2383
.
16.
Plessers
,
P.
, and
Snoeys
,
R.
,
1988
, “
Dynamic Stability of Mechanical Structures Containing Externally Pressurized Gas-Lubricated Thrust Bearings
,”
ASME J. Tribol.
,
110
(
2
), pp.
271
278
.
17.
Otsu
,
Y.
,
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2011
, “
Dynamic Characteristics of Aerostatic Porous Journal Bearings With a Surface-Restricted Layer
,”
ASME J. Tribol.
,
133
(
1
), p.
011701
.
18.
Cui
,
H. L.
,
Wang
,
Y.
,
Wang
,
B. R.
,
Yang
,
H.
, and
Xia
,
H.
,
2018
, “
Numerical Simulation and Experimental Verification of the Stiffness and Stability of Thrust Pad Aerostatic Bearings
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
12
.
19.
Sahto
,
M. P.
,
Wang
,
W.
,
Imran
,
M.
,
He
,
L.
,
Li
,
H.
, and
Weiwei
,
G.
,
2020
, “
Modelling and Simulation of Aerostatic Thrust Bearings
,”
IEEE Access
,
8
, pp.
121299
121310
.
20.
Chang
,
S. H.
,
Chan
,
C. W.
, and
Jeng
,
Y. R.
,
2014
, “
Discharge Coefficients in Aerostatic Bearings With Inherent Orifice-Type Restrictors
,”
ASME J. Tribol.
,
137
(
1
), p.
011705
.
21.
Ye
,
Y. X.
,
Chen
,
X. D.
,
Hu
,
Y. T.
, and
Luo
,
X.
,
2010
, “
Effects of Recess Shapes on Pneumatic Hammering in Aerostatic Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
224
(
J3
), pp.
231
237
.
22.
Zhuang
,
H.
,
Ding
,
J.
,
Chen
,
P.
,
Chang
,
Y.
,
Zeng
,
X.
,
Yang
,
H.
,
Liu
,
X.
, and
Wei
,
W.
,
2019
, “
Numerical Study on Static and Dynamic Performances of a Double-Pad Annular Inherently Compensated Aerostatic Thrust Bearing
,”
ASME J. Tribol.
,
141
(
5
), p.
051701
.
23.
Dal
,
A.
, and
Karaçay
,
T.
,
2021
, “
Pneumatic Hammer Instability in the Aerostatic Journal Bearing-Rotor System: A Theoretical and Experimental Analyses
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
3
), pp.
524
543
.
24.
Ma
,
W.
,
Cui
,
J. W.
,
Liu
,
Y. M.
, and
Tan
,
J. B.
,
2016
, “
Improving the Pneumatic Hammer Stability of Aerostatic Thrust Bearing With Recess Using Damping Orifices
,”
Tribol. Int.
,
103
, pp.
281
288
.
25.
Cui
,
C.
, and
Ono
,
K.
,
1997
, “
Theoretical and Experimental Investigation of an Externally Pressurized Porous Annular Thrust Gas Bearing and Its Optimal Design
,”
ASME J. Tribol.
,
119
(
3
), pp.
486
492
.
26.
Miyatake
,
M.
,
Yoshimoto
,
S.
, and
Sato
,
J.
,
2006
, “
Whirling Instability of a Rotor Supported by Aerostatic Porous Journal Bearings With a Surface-Restricted Layer
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
220
(
J2
), pp.
95
103
.
27.
Yoshimoto
,
S.
, and
Kohno
,
K.
,
2001
, “
Static and Dynamic Characteristics of Aerostatic Circular Porous Thrust Bearings—(Effect of the Shape of the Air Supply Area)
,”
ASME J. Tribol.
,
123
(
3
), pp.
501
508
.
28.
Cui
,
H. L.
,
Wang
,
Y.
,
Yue
,
X. B.
,
Li
,
Y. F.
, and
Jiang
,
Z. Y.
,
2019
, “
Numerical Analysis of the Dynamic Performance of Aerostatic Thrust Bearings With Different Restrictors
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
233
(
3
), pp.
406
423
.
29.
Wang
,
W.
,
Cheng
,
X. H.
,
Zhang
,
M.
,
Gong
,
W. W.
, and
Cui
,
H. L.
,
2020
, “
Effect of the Deformation of Porous Materials on the Performance of Aerostatic Bearings by Fluid-Solid Interaction Method
,”
Tribol Int
,
150
, p.
106391
.
30.
Wang
,
N. Z.
, and
Chen
,
H. Y.
,
2016
, “
A Two-Stage Multiobjective Optimization Algorithm for Porous Air Bearing Design
,”
Tribol Int
,
93
, pp.
355
363
.
31.
Saha
,
N.
, and
Majumdar
,
B. C.
,
2002
, “
Study of Externally-Pressurized Gas-Lubricated Two-Layered Porous Journal Bearings: A Steady State Analysis
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
216
(
J3
), pp.
151
158
.
32.
Joseph
,
J.
,
Kuntikana
,
G.
, and
Singh
,
D. N.
,
2019
, “
Investigations on Gas Permeability in Porous Media
,”
J. Nat. Gas Sci. Eng.
,
64
, pp.
81
92
.
33.
Zhang
,
X. B.
,
Ding
,
S. T.
,
Du
,
F. R.
,
Ji
,
F. Z.
,
Xu
,
Z.
,
Liu
,
J.
,
Zhang
,
Q.
, and
Zhou
,
Y.
,
2022
, “
Investigation Into Gas Lubrication Performance of Porous Gas Bearing Considering Velocity Slip Boundary Condition
,”
Friction
,
10
(
6
), pp.
891
910
.
You do not currently have access to this content.