Abstract

Milling is widely used in the aeronautical and aerospace industries, due to the possibility of producing parts with good dimensional stability and surface quality. Because of its exceptional mechanical qualities and limited thermal conductivity, Inconel 718 is a nickel superalloy that is regarded as a challenging material to process. Due to the flexibility of milling, this is the most commonly used process for machining INCONEL alloys. However, high levels of tool wear can be observed. Coatings can be deposited on the cutting tools to improve process performance. Nonetheless, doping elements such as yttrium and vanadium when added to TiAlN-based coatings can increase the coatinǵs resistance. Furthermore, multilayer coatings tend to be very promising resistance to crack propagation. Thus, this work intends to compare three coatings deposited via PVD, in terms of the quality of the machined surface and wear resulting from the process: TiAlVN, TiAlYN, and TiN/TiAlN. The cutting speed (Vc), feed per tooth (fz), and cutting length (Lcut) were varied. It was possible to verify that the multilayer coating had better results, in terms of average roughness (Ra) and in measuring wear (VB3) and its characterization. On the other hand, the TiAlVN coating showed the worst results. It was concluded that due to the TiN layer, the TiN/TiAlN coating has better resistance to crack propagation, as its adhesion to the substrate is good and there is no delamination.

References

1.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Sousa
,
V. F. C.
, and
Silva
,
F. G. S.
,
2022
, “
Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review
,”
Metals (Basel)
,
12
(
11
), p.
1874
.
2.
Smith
,
D. H.
,
Bicknell
,
J.
,
Jorgensen
,
L.
,
Patterson
,
B. M.
,
Cordes
,
N. L.
,
Tsukrov
,
I.
, and
Knezevic
,
M.
,
2016
, “
Microstructure and Mechanical Behavior of Direct Metal Laser Sintered Inconel Alloy 718
,”
Mater. Charact.
,
113
, pp.
1
9
.
3.
Qi
,
H.
,
Azer
,
M.
, and
Ritter
,
A.
,
2009
, “
Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2410
2422
.
4.
Roy
,
S.
,
Kumar
,
R.
,
Anurag
,
Panda
,
A.
, and
Das
,
R. K.
,
2018
, “
A Brief Review on Machining of Inconel 718
,”
Mater. Today Proc.
,
5
(
9
), pp.
18664
18673
.
5.
Outeiro
,
J. C.
,
Pina
,
J. C.
,
M'Saoubi
,
R.
,
Pusavec
,
F.
, and
Jawahir
,
I. S.
,
2008
, “
Analysis of Residual Stresses Induced by Dry Turning of Difficult-to-Machine Materials
,”
CIRP Ann.
,
57
(
1
), pp.
77
80
.
6.
Sousa
,
V. F. C.
, and
Silva
,
F. J. G.
,
2020
, “
Recent Advances on Coated Milling Tool Technology—A Comprehensive Review
,”
Coatings
,
10
(
3
), p.
235
.
7.
Martinho
,
R. P.
,
Silva
,
F. J. G.
, and
Baptista
,
A. P. M.
,
2008
, “
Cutting Forces and Wear Analysis of Si3N4 Diamond Coated Tools in High Speed Machining
,”
Vacuum
,
82
(
12
), pp.
1415
1420
.
8.
Sousa
,
V. F. C.
,
Silva
,
F. J. G.
,
Lopes
,
H.
,
Casais
,
R. C. B.
,
Baptista
,
A.
,
Pinto
,
G.
, and
Alexandre
,
R.
,
2021
, “
Wear Behavior and Machining Performance of TiAlSiN-Coated Tools Obtained by dc MS and HiPIMS: A Comparative Study
,”
Materials
,
14
(
18
), p.
5122
.
9.
Silva
,
F. J. G.
,
Martinho
,
R. P.
, and
Baptista
,
A. P. M.
,
2014
, “
Characterization of Laboratory and Industrial CrN/CrCN/Diamond-Like Carbon Coatings
,”
Thin Solid Films
,
550
, pp.
278
284
.
10.
Abdullah
,
M. Z. B.
,
Ahmad
,
M. A.
,
Abdullah
,
A. N.
,
Othman
,
M. H.
,
Hussain
,
P.
, and
Zainuddin
,
A.
,
2016
, “
Metal Release of Multilayer Coatings by Physical Vapour Deposition (PVD)
,”
Procedia Eng.
,
148
, pp.
254
260
.
11.
Liew
,
W. Y. H.
,
Lim
,
H. P.
,
Melvin
,
G. J. H.
,
Dayou
,
J.
, and
Jiang
,
Z. T.
,
2022
, “
Thermal Stability, Mechanical Properties, and Tribological Performance of TiAlXN Coatings: Understanding the Effects of Alloying Additions
,”
J. Mater. Res. Technol.
,
17
, pp.
961
1012
.
12.
Mitsuo
,
A.
,
Uchida
,
S.
,
Nihira
,
N.
, and
Iwaki
,
M.
,
1998
, “
Improvement of High-Temperature Oxidation Resistance of Titanium Nitride and Titanium Carbide Films by Aluminum ion Implantation
,”
Surf. Coat. Technol.
,
103–104
, pp.
98
103
.
13.
Sousa
,
V. F. C.
,
Da Silva
,
F. J. G.
,
Pinto
,
G. F.
,
Baptista
,
A.
, and
Alexandre
,
R.
,
2021
, “
Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review
,”
Metals (Basel)
,
11
(
2
), p.
260
.
14.
Tillmann
,
W.
,
Momeni
,
S.
, and
Hoffmann
,
F.
,
2013
, “
A Study of Mechanical and Tribological Properties of Self-Lubricating TiAlVN Coatings at Elevated Temperatures
,”
Tribol. Int.
,
66
, pp.
324
329
.
15.
Aninat
,
R.
,
Valle
,
N.
,
Chemin
,
J.-B.
,
Duday
,
D.
,
Michotte
,
C.
,
Penoy
,
M.
,
Bourgeois
,
L.
, and
Choquet
,
P.
,
2019
, “
Addition of Ta and Y in a Hard Ti-Al-N PVD Coating: Individual and Conjugated Effect on the Oxidation and Wear Properties
,”
Corros. Sci.
,
156
, pp.
171
180
.
16.
PalDey
,
S.
, and
Deevi
,
S. C.
,
2003
, “
Single Layer and Multilayer Wear Resistant Coatings of (Ti,Al)N: A Review
,”
Mater. Sci. Eng. A
,
342
(
1-2
), pp.
58
79
.
17.
Lei
,
Z.
,
Zhu
,
X.
,
Li
,
Y.
,
Song
,
Z.
,
Liu
,
H.
, and
Fu
,
Y. Q.
,
2018
, “
Characterization and Tribological Behavior of TiAlN/TiAlCN Multilayer Coatings
,”
ASME J. Tribol.
,
140
(
5
), p.
051301
.
18.
Abegunde
,
O. O.
,
Akinlabi
,
E. T.
,
Oladijo
,
O. P.
,
Akinlabi
,
S.
, and
Ude
,
A. U.
,
2019
, “
Overview of Thin Film Deposition Techniques
,”
AIMS Mater. Sci.
,
6
(
2
), pp.
174
199
.
19.
Sousa
,
V. F. C.
, and
Silva
,
F. J. G.
,
2020
, “
Recent Advances in Turning Processes Using Coated Tools—A Comprehensive Review
,”
Metals (Basel)
,
10
(
2
), p.
170
.
20.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
25
54
.
21.
De Bartolomeis
,
A.
,
Newman
,
S. T.
,
Jawahir
,
I. S.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
Future Research Directions in the Machining of Inconel 718
,”
J. Mater. Process. Technol.
,
297
, p.
117260
.
22.
Buddaraju
,
K. M.
,
Sastry
,
G. R. K.
, and
Kosaraju
,
S.
,
2021
, “
A Review on Turning of Inconel Alloys
,”
Mater. Today Proc.
,
44
, pp.
2645
2652
.
23.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2017
, “
Hybrid Cooling and Lubricating Technology for CNC Milling of Inconel 718 Nickel Alloy
,”
Procedia Manuf.
,
11
, pp.
625
632
.
24.
Pedroso
,
A. F. V.
,
Sousa
,
V. F. C.
,
Sebbe
,
N. P. V.
,
Silva
,
F. J. G.
,
Campilho
,
R. D. S. G.
,
Sales-Contini
,
R. C. M.
, and
Jesus
,
A. M. P.
,
2023
, “
A Comprehensive Review on the Conventional and Non-Conventional Machining and Tool-Wear Mechanisms of INCONEL®
,”
Metals (Basel)
,
13
(
3
), p.
585
.
25.
Ezugwu
,
E. O.
,
Wang
,
Z. M.
, and
Okeke
,
C. I.
,
1999
, “
Tool Life and Surface Integrity When Machining Inconel 718 With PVD- and CVD-Coated Tools
,”
Tribol. Trans.
,
42
(
2
), pp.
353
360
.
26.
Pinheiro
,
C.
,
Kondo
,
M. Y.
,
Amaral
,
S. S.
,
Callisaya
,
E. S.
,
De Souza
,
J. V. C.
,
Alves
,
M. C. S.
, and
Ribeiro
,
M. V.
,
2021
, “
Effect of Machining Parameters on Turning Process of Inconel 718
,”
Mater. Manuf. Processes
,
36
, pp.
1421
1437
.
27.
Liao
,
Y. S.
,
Lin
,
H. M.
, and
Wang
,
J. H.
,
2008
, “
Behaviors of End Milling Inconel 718 Superalloy by Cemented Carbide Tools
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
460
465
.
28.
Sahab
,
A. R. M.
,
Saad
,
N. H.
,
Kasolang
,
S.
, and
Saedon
,
J.
,
2012
, “
Impact of Plasma Spray Variables Parameters on Mechanical and Wear Behavior of Plasma Sprayed Al2O3 3%wt TiO2 Coating in Abrasion and Erosion Application
,”
Procedia Eng.
,
41
, pp.
1689
1695
.
29.
Baptista
,
A.
,
Silva
,
F.
,
Porteiro
,
J.
,
Míquez
,
J.
, and
Pinto
,
G.
,
2018
, “
Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands
,”
Coatings
,
8
(
11
), p.
402
.
30.
Mattox
,
D. M.
,
2002
, “
Physical Vapor Deposition (PVD) Processes
,”
Met. Finish.
,
100
(
1
), pp.
394
408
.
31.
Ghailane
,
A.
,
Makha
,
M.
,
Larhlimi
,
H.
, and
Alami
,
J.
,
2020
, “
Design of Hard Coatings Deposited by HiPIMS and dcMS
,”
Mater. Lett.
,
280
, p.
128540
.
32.
Merie
,
V. V.
,
Bȋrleanu
,
C.
,
Pustan
,
M. S.
,
Negrea
,
G.
, and
Pintea
,
I. M.
,
2016
, “
Analysis on Temperature Effect on the Mechanical and Tribological Properties of Titanium Nitride Thin Films
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
147
, p.
12019
.
33.
Yang
,
K.
,
Xian
,
G.
,
Zhao
,
H.
,
Fan
,
H.
,
Wang
,
J.
,
Wang
,
H.
, and
Du
,
H.
,
2015
, “
Effect of Mo Content on the Structure and Mechanical Properties of TiAlMoN Films Deposited on WC–Co Cemented Carbide Substrate by Magnetron Sputtering
,”
Int. J. Refract. Metals Hard. Mater.
,
52
, pp.
29
35
.
34.
Liu
,
Z. R.
,
Chen
,
L.
,
Du
,
Y.
, and
Zhang
,
S.
,
2020
, “
Influence of Ru-Addition on Thermal Decomposition and Oxidation Resistance of TiAlN Coatings
,”
Surf. Coat. Technol.
,
401
, p.
126234
.
35.
Mo
,
J.
,
Wu
,
Z.
,
Yao
,
Y.
,
Zhang
,
Q.
, and
Wang
,
Q.
,
2018
, “
Influence of Y-Addition and Multilayer Modulation on Microstructure, Oxidation Resistance and Corrosion Behavior of Al0.67Ti0.33N Coatings
,”
Surf. Coat. Technol.
,
342
, pp.
129
136
.
36.
Nunes
,
V.
,
Silva
,
F. J. G.
,
Andrade
,
M. F.
,
Alexandre
,
R.
, and
Baptista
,
A. P. M.
,
2017
, “
Increasing the Lifespan of High-Pressure Die Cast Molds Subjected to Severe Wear
,”
Surf. Coat. Technol.
,
332
, pp.
319
331
.
37.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Pedroso
,
A. F. V.
,
Sales-Contini
,
R. C. M.
,
Barbosa
,
M. L. S.
,
Durão
,
L. M.
, and
Magalhães
,
L. L.
,
2024
, “
Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718
,”
Coatings
,
14
(
3
), p.
311
.
38.
Kathrein
,
M.
,
Michotte
,
C.
,
Penoy
,
M.
,
Polcik
,
P.
, and
Mitterer
,
C.
,
2005
, “
Multifunctional Multi-Component PVD Coatings for Cutting Tools
,”
Surf. Coat. Technol.
,
200
(
5–6
), pp.
1867
1871
.
39.
Pfeiler-Deutschmann
,
M.
,
Mayrhofer
,
P. H.
,
Chladil
,
K.
,
Penoy
,
M.
,
Michotte
,
C.
,
Kathrein
,
M.
, and
Mitterer
,
C.
,
2015
, “
Effect of Wavelength Modulation of Arc Evaporated Ti–Al–N/Ti–Al–V–N Multilayer Coatings on Microstructure and Mechanical/Tribological Properties
,”
Thin Solid Films
,
581
, pp.
20
24
.
40.
Xu
,
Y. X.
,
Chen
,
L.
,
Pei
,
F.
,
Yue
,
J. L.
, and
Du
,
Y.
,
2018
, “
Thermal Stability and Oxidation Resistance of V-Alloyed TiAlN Coatings
,”
Ceram. Int.
,
44
(
2
), pp.
1705
1710
.
41.
Zhang
,
J.
,
Chen
,
L.
, and
Kong
,
Y.
,
2022
, “
The Microstructural, Mechanical and Thermal Properties of TiAlVN, TiAlSiN Monolithic and TiAlVN/TiAlSiN Multilayered Coatings
,”
J. Alloys Compd.
,
899
, p.
163332
.
42.
Moser
,
M.
,
Kiener
,
D.
,
Scheu
,
C.
, and
Mayrhofer
,
P. H.
,
2010
, “
Influence of Yttrium on the Thermal Stability of Ti-Al-N Thin Films
,”
Materials
,
3
(
3
), pp.
1573
1592
.
43.
Silva
,
F. J. G.
,
Sebbe
,
N. P. V.
,
Costa
,
R. D. F. S.
,
Pedroso
,
A. F. V.
,
Sales-Contini
,
R. C. M.
,
Barbosa
,
M. L. S.
, and
Martinho
,
R. P.
,
2024
, “
Investigations on the Surface Integrity and Wear Mechanisms of TiAlYN-Coated Tools in Inconel 718 Milling Operations
,”
Materials
,
17
(
2
), p.
443
.
44.
Çomaklı
,
O.
,
2021
, “
Improved Structural, Mechanical, Corrosion and Tribocorrosion Properties of Ti45Nb Alloys by TiN, TiAlN Monolayers, and TiAlN/TiN Multilayer Ceramic Films
,”
Ceram. Int.
,
47
(
3
), pp.
4149
4156
.
45.
Li
,
G.
,
Zhang
,
L.
,
Cai
,
F.
,
Yang
,
Y.
,
Wang
,
Q.
, and
Zhang
,
S.
,
2019
, “
Characterization and Corrosion Behaviors of TiN/TiAlN Multilayer Coatings by Ion Source Enhanced Hybrid Arc Ion Plating
,”
Surf. Coat. Technol.
,
366
, pp.
355
365
.
46.
Wang
,
J.
,
Yazdi
,
M. A. P.
,
Lomello
,
F.
,
Billard
,
A.
,
Kovács
,
A.
,
Schuster
,
F.
,
Guet
,
C.
,
White
,
T. J.
,
Sanchette
,
F.
, and
Dong
,
Z.
,
2017
, “
Influence of Microstructures on Mechanical Properties and Tribology Behaviors of TiN/TiXAl1−XN Multilayer Coatings
,”
Surf. Coat. Technol.
,
320
, pp.
441
446
.
47.
Ducroux
,
E.
,
Fromentin
,
G.
,
Viprey
,
F.
,
Prat
,
D.
, and
D’acunto
,
A.
,
2021
, “
New Mechanistic Cutting Force Model for Milling Additive Manufactured Inconel 718 Considering Effects of Tool Wear Evolution and Actual Tool Geometry
,”
J. Manuf. Process.
,
64
, pp.
67
80
.
48.
Zheng
,
G.
,
Zhao
,
G.
,
Cheng
,
X.
,
Xu
,
R.
,
Zhao
,
J.
, and
Zhang
,
H.
,
2018
, “
Frictional and Wear Performance of TiAlN/TiN Coated Tool Against High-Strength Steel
,”
Ceram. Int.
,
44
(
6
), pp.
6878
6885
.
49.
Zuo
,
J.
,
Lin
,
Y.
,
Zheng
,
J.
,
Zhong
,
P.
, and
He
,
M.
,
2019
, “
An Investigation of Thermal-Mechanical Interaction Effect on PVD Coated Tool Wear for Milling Be/Cu Alloy
,”
Vacuum
,
167
, pp.
271
279
.
50.
ISO 4288:1996
,
1996
,
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture
,
International Organization for Standardization
,
Geneva, Switzerland
.
51.
ISO 8688-2:1986
,
1986
,
Tool Life Testing in Milling—Part 2: End Milling
,
International Organization for Standardization
,
Geneva, Switzerland
.
52.
Sousa
,
V. F. C.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Costa
,
R. D. F. S.
,
Sebbe
,
N.
, and
Sales-Contini
,
R. C. M.
,
2023
, “
Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718
,”
Metals (Basel)
,
13
(
4
), p.
684
.
53.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2009
, “
Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
561
568
.
54.
Čep
,
R.
,
Janásek
,
A.
,
Petru
,
J.
,
Sadilek
,
M.
,
Mohyla
,
P.
,
Valíček
,
J.
,
Harničárová
,
M.
, and
Czán
,
A.
,
2014
, “
Surface Roughness After Machining and Influence of Feed Rate on Process
,”
Precis. Mach. VII
,
581
, pp.
341
347
.
55.
Liang
,
X.
, and
Liu
,
Z.
,
2018
, “
Tool Wear Behaviors and Corresponding Machined Surface Topography During High-Speed Machining of Ti-6Al-4 V With Fine Grain Tools
,”
Tribol. Int.
,
121
, pp.
321
332
.
56.
Guo
,
C.-Q.
,
Li
,
H.-Q.
,
Peng
,
Y.-L.
,
Dai
,
M.-J.
,
Lin
,
S.-S.
,
Shi
,
Q.
, and
Wei
,
C.-B.
,
2022
, “
Residual Stress and Tribological Behavior of Hydrogen-Free Al-DLC Films Prepared by HiPIMS Under Different Bias Voltages
,”
Surf. Coat. Technol.
,
445
, p.
128713
.
57.
Zhang
,
M.
,
Zhang
,
D.
,
Geng
,
D.
,
Shao
,
Z.
,
Liu
,
Y.
, and
Jiang
,
X.
,
2020
, “
Effects of Tool Vibration on Surface Integrity in Rotary Ultrasonic Elliptical End Milling of Ti–6Al–4V
,”
J. Alloys Compd.
,
821
, p.
153266
.
58.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Sousa
,
V. F. C.
,
Sales-Contini
,
R. C. M.
,
Campilho
,
R. D. S. G.
, and
Pedroso
,
A. F. V.
,
2024
, “Wear behavior Analysis of TiN/TiAlN Coated Tools in Milling of Inconel 718,”
Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems
, Vol. 1,
F. J. G.
Silva
,
A. B.
Pereira
, and
R. D. S. G.
Campilho
, eds.,
Springer Nature Switzerland
,
Cham
, pp.
784
795
.
59.
Dehghan
,
S.
, and
Soury
,
E.
,
2021
, “
A Comparative Study on Machining and Tool Performance in Friction Drilling of Difficult-to-Machine Materials AISI304, Ti-6Al-4 V, Inconel718
,”
J. Manuf. Process.
,
61
, pp.
128
152
.
60.
Ning
,
Y.
,
Rahman
,
M.
, and
Wong
,
Y. S.
,
2001
, “
Investigation of Chip Formation in High Speed end Milling
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
360
367
.
61.
Sarıkaya
,
M.
,
Gupta
,
M. K.
,
Tomaz
,
I.
,
Pimenov
,
D. Y.
,
Kuntoğlu
,
M.
,
Khanna
,
N.
,
Yıldırım
,
ÇV
, and
Krolczyk
,
G. M.
,
2021
, “
A State-of-the-Art Review on Tool Wear and Surface Integrity Characteristics in Machining of Superalloys
,”
CIRP J. Manuf. Sci. Technol.
,
35
, pp.
624
658
.
62.
Korkut
,
I.
, and
Donertas
,
M. A.
,
2007
, “
The Influence of Feed Rate and Cutting Speed on the Cutting Forces, Surface Roughness and Tool–Chip Contact Length During Face Milling
,”
Mater. Des.
,
28
(
1
), pp.
308
312
.
63.
Sousa
,
V. F. C.
,
Castanheira
,
J.
,
Silva
,
F. J. G.
,
Fecheira
,
J. S.
,
Pinto
,
G.
, and
Baptista
,
A.
,
2021
, “
Wear Behavior of Uncoated and Coated Tools in Milling Operations of AMPCO (Cu-Be) Alloy
,”
Appl. Sci.
,
11
(
6
), p.
7762
.
64.
Zhou
,
J.
,
Bushlya
,
V.
,
Avdovic
,
P.
, and
Ståhl
,
J. E.
,
2012
, “
Study of Surface Quality in High Speed Turning of Inconel 718 With Uncoated and Coated CBN Tools
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1-4
), pp.
141
151
.
65.
Narutaki
,
N.
,
Yamane
,
Y.
,
Hayashi
,
K.
,
Kitagawa
,
T.
, and
Uehara
,
K.
,
1993
, “
High-Speed Machining of Inconel 718 With Ceramic Tools
,”
CIRP Ann.
,
42
(
1
), pp.
103
106
.
66.
Sousa
,
V. F. C.
,
Silva
,
F. J. G.
,
Alexandre
,
R.
,
Fecheira
,
J. S.
, and
Silva
,
F. P. N.
,
2021
, “
Study of the Wear Behavior of TiAlSiN and TiAlN PVD Coated Tools on Milling Operations of Pre-Hardened Tool Steel
,”
Wear
,
476
, p.
203695
.
67.
Xie
,
W.
,
Zhao
,
Y.
,
Liao
,
B.
,
Wang
,
S.
, and
Zhang
,
S.
,
2022
, “
Comparative Tribological Behavior of TiN Monolayer and Ti/TiN Multilayers on AZ31 Magnesium Alloys
,”
Surf. Coat. Technol.
,
441
, p.
128590
.
68.
Lu
,
X.
,
Jia
,
Z.
,
Wang
,
H.
,
Si
,
L.
,
Liu
,
Y.
, and
Wu
,
W.
,
2016
, “
Tool Wear Appearance and Failure Mechanism of Coated Carbide Tools in Micro-Milling of Inconel 718 Super Alloy
,”
Ind. Lubr. Tribol.
,
68
(
2
), pp.
267
277
.
69.
Mahesh
,
K.
,
Philip
,
J. T.
,
Joshi
,
S. N.
, and
Kuriachen
,
B.
,
2021
, “
Machinability of Inconel 718: A Critical Review on the Impact of Cutting Temperatures
,”
Mater. Manuf. Processes
,
36
(
7
), pp.
753
791
.
70.
Krishnan
,
N. A.
, and
Mathew
,
J.
,
2020
, “
Studies on Wear Behavior of AlTiN-Coated WC Tool and Machined Surface Quality in Micro Endmilling of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
110
(
1-2
), pp.
291
307
.
You do not currently have access to this content.