Abstract

The cold metal transfer (CMT)-based wire arc additive manufacturing (WAAM) technique has limited wear applications compared to other manufacturing methods due to its lower wear resistance. However, integrating friction stir processing (FSP) with WAAM can enhance mechanical or wear performance, making it a promising and reliable manufacturing process for aerospace, automotive, and marine applications. In this work, CMT-WAAM technique has been used to fabricate a bimetallic wall of aluminum alloys (ER4043/ER5356), employing a bidirectional depositional strategy. The impact of FSP on the interface layer of the WAAM wall, serving as a post-processing treatment on the wall's surface, is studied in terms of microstructure and microhardness. Additionally, a pin-on-disk wear test is performed on the interface layer of both WAAM and FSP-treated WAAM walls under loads of 20 N, 30 N, and 40 N. Results from optical and Field emission scanning electron microscopy (FESEM) microstructures revealed the grain refinement in the stirred zone, with a higher wt% of Mg through Energy Dispersive Spectrometer (EDS) analysis. X-ray diffraction (XRD) identifies various intermetallic compounds, including Al12Mg17, Al3.21Si0.47, and Mg2Si, with higher peak intensities in the FSP-treated wall. Electron Backscatter Diffraction (EBSD) analysis indicates a decrease in the average grain size of the stirred area, which is ∼72.40 µm in the unstirred area and ∼5.57 µm in the stirred area due to the local strain concentration effect during FSP. Grain refinement during FSP leads to an increase in average hardness by 35.9%. The wear-rate and coefficient of friction (COF) get reduced, credited to high-temperature dynamic recrystallization and continuous grain recovery in FSP. Scanning electron microscope (SEM) analysis of worn surfaces highlights abrasion, delamination, and adhesion as significant wear mechanisms.

References

1.
Wu
,
B.
,
Pan
,
Z.
,
Ding
,
D.
,
Cuiuri
,
D.
,
Li
,
H.
,
Xu
,
J.
, and
Norrish
,
J.
,
2018
, “
A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement
,”
J. Manuf. Process.
,
35
, pp.
127
139
.
2.
Pattanayak
,
S.
, and
Sahoo
,
S. K.
,
2021
, “
Gas Metal Arc Welding Based Additive Manufacturing—A Review
,”
CIRP J. Manuf. Sci. Technol.
,
33
, pp.
398
442
.
3.
Tomar
,
B.
, and
Shiva
,
S.
,
2023
, “
Cold Metal Transfer-Based Wire Arc Additive Manufacturing
,”
J Braz. Soc. Mech. Sci. Eng.
,
45
(
3
), p.
157
.
4.
Tomar
,
B.
,
Shiva
,
S.
, and
Nath
,
T.
,
2022
, “
A Review on Wire Arc Additive Manufacturing: Processing Parameters, Defects, Quality Improvement and Recent Advances
,”
Mater. Today Commun.
,
31
, p.
103739
.
5.
Yuan
,
L.
,
Ding
,
D.
,
Pan
,
Z.
,
Yu
,
Z.
,
Wu
,
B.
,
van Duin
,
S.
,
Li
,
H.
, and
Li
,
W.
,
2020
, “
Application of Multi-Directional Robotic Wire Arc Additive Manufacturing Process for the Fabrication of Complex Metallic Parts
,”
IEEE Trans. Ind. Informatics
,
16
(
1
), pp.
454
464
.
6.
Yan
,
Z.
,
Zhao
,
Y.
,
Jiang
,
F.
,
Chen
,
S.
,
Li
,
F.
,
Cheng
,
W.
, and
Ma
,
X.
,
2021
, “
Metal Transfer Behaviour of CMT-Based Step-Over Deposition in Fabricating Slant Features
,”
J. Manuf. Process.
,
71
, pp.
147
155
.
7.
Jafari
,
D.
,
Vaneker
,
T. H. J.
, and
Gibson
,
I.
,
2021
, “
Wire and Arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts
,”
Mater. Des.
,
202
, p.
109471
.
8.
Chen
,
C.
,
Sun
,
G.
,
Du
,
W.
,
Liu
,
J.
, and
Zhang
,
H.
,
2023
, “
Effect of Equivalent Heat Input on WAAM Al-Si Alloy
,”
Int. J. Mech. Sci.
,
238
, p.
107831
.
9.
Wang
,
J.
,
Zhu
,
K.
,
Zhang
,
W.
,
Zhu
,
X.
, and
Lu
,
X.
,
2022
, “
Microstructural and Defect Evolution During WAAM Resulting in Mechanical Property Differences for AA5356 Component
,”
J. Mater. Res. Technol.
,
22
, pp.
982
996
.
10.
Zhang
,
B.
,
Wang
,
C.
,
Wang
,
Z.
,
Zhang
,
L.
, and
Gao
,
Q.
,
2019
, “
Microstructure and Properties of Al Alloy ER5183 Deposited by Variable Polarity Cold Metal Transfer
,”
J. Mater. Process. Technol.
,
267
, pp.
167
176
.
11.
Li
,
Y.
,
Wang
,
C.
,
Du
,
X.
,
Tian
,
W.
,
Zhang
,
T.
,
Hu
,
J.
,
Li
,
B.
,
Li
,
P.
, and
Liao
,
W.
,
2023
, “
Research Status and Quality Improvement of Wire Arc Additive Manufacturing of Metals
,”
Trans. Nonferrous Metals Soc. China
,
33
(
4
), pp.
969
996
.
12.
Tian
,
Y.
,
Shen
,
J.
,
Hu
,
S.
,
Wang
,
Z.
, and
Gou
,
J.
,
2019
, “
Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V and AlSi5 Dissimilar Alloys Using Cold Metal Transfer Welding
,”
J. Manuf. Process.
,
46
, pp.
337
344
.
13.
Chang
,
T.
,
Fang
,
X.
,
Liu
,
G.
,
Zhang
,
H.
, and
Huang
,
K.
,
2022
, “
Wire and Arc Additive Manufacturing of Dissimilar 2319 and 5B06 Aluminium Alloys
,”
J. Mater. Sci. Technol.
,
124
, pp.
65
75
.
14.
Hauser
,
T.
,
Reisch
,
R. T.
,
Seebauer
,
S.
,
Parasar
,
A.
,
Kamps
,
T.
,
Casati
,
R.
,
Volpp
,
J.
, and
Kaplan
,
A. F.
,
2021
, “
Multi-Material Wire Arc Additive Manufacturing of Low and High Alloyed Aluminium Alloys With Insitu Material Analysis
,”
J. Manuf. Process.
,
69
, pp.
378
390
.
15.
Yipeng
,
W.
,
Shuo
,
Z.
,
Hong
,
L.
,
Hodúlová
,
E.
,
Zhuoxin
,
L.
, and
Baoqiang
,
C.
,
2024
, “
Microstructure and Mechanical Properties of 7075/5356 Aluminum Alloy Laminated Composite Fabricated by Wire Arc Additive Manufacturing
,”
Mater. Lett.
,
367
, p.
136638
.
16.
He
,
P.
,
Bai
,
X.
, and
Zhang
,
H.
,
2022
, “
Microstructure Refinement and Mechanical Properties Enhancement of Wire and Arc Additively Manufactured 6061 Aluminum Alloy Using Friction Stir Processing Post-Treatment
,”
Mater. Lett.
,
330
, p.
133365
.
17.
Wang
,
F.
,
Wei
,
J.
,
Wu
,
G.
,
Qie
,
M.
, and
He
,
C.
,
2023
, “
Microstructural Modification and Enhanced Mechanical Properties of Wire-Arc Additive Manufactured 6061 Aluminum Alloy via Interlayer Friction Stir Processing
,”
Mater. Lett.
,
342
, p.
134312
.
18.
Tian
,
Y.
,
Shen
,
J.
,
Hu
,
S.
,
Liang
,
Y.
, and
Bai
,
P.
,
2018
, “
Effects of Ultrasonic Peening Treatment on Surface Quality of CMT-Welds of Al Alloys
,”
J. Mater. Process. Technol.
,
254
, pp.
193
200
.
19.
Liu
,
L.
,
Xu
,
W.
,
Zhao
,
Y.
,
Lin
,
Z.
,
Liu
,
Z.
,
Dong
,
Y.
, and
Dong
,
C.
,
2023
, “
Tailoring the Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Al–Mg Alloy via Interlayer Friction Stir Processing
,”
J. Mater. Res. Technol.
,
25
, pp.
1055
1068
.
20.
Wei
,
J.
,
He
,
C.
,
Zhao
,
Y.
,
Qie
,
M.
,
Qin
,
G.
, and
Zuo
,
L.
,
2023
, “
Evolution of Microstructure and Properties in 2219 Aluminium Alloy Produced by Wire Arc Additive Manufacturing Assisted by Interlayer Friction Stir Processing
,”
Mater. Sci. Eng. A
,
868
, p.
144794
.
21.
Arana
,
M.
,
Ukar
,
E.
,
Rodriguez
,
I.
,
Aguilar
,
D.
, and
Álvarez
,
P.
,
2022
, “
Influence of Deposition Strategy and Heat Treatment on Mechanical Properties and Microstructure of 2319 Aluminium WAAM Components
,”
Mater. Des.
,
221
, p.
110974
.
22.
Qie
,
M.
,
Wei
,
J.
, and
He
,
C.
,
2023
, “
Microstructure Evolution and Mechanical Properties of Wire-arc Additive Manufactured Al–Zn–Mg–Cu Alloy Assisted by Interlayer Friction Stir Processing
,”
J. Mater. Res. Technol.
,
24
, pp.
2891
2906
.
23.
He
,
C.
,
Wei
,
J.
,
Li
,
Y.
,
Zhang
,
Z.
,
Tian
,
N.
,
Qin
,
G.
, and
Zuo
,
L.
,
2023
, “
Improvement of Microstructure and Fatigue Performance of Wire-Arc Additive Manufactured 4043 Aluminum Alloy Assisted by Interlayer Friction Stir Processing
,”
J. Mater. Sci. Technol.
,
133
, pp.
183
194
.
24.
Xiao
,
Y.
,
Li
,
Y.
,
Shi
,
L.
,
Wu
,
C.
,
Liu
,
H.
, and
Sun
,
Z.
,
2023
, “
Experimental and Numerical Analysis of Friction Stir Additive Manufacturing of 2024 Aluminium Alloy
,”
Mater. Today Commun.
,
35
, p.
105639
.
25.
Gu
,
J.
,
Ding
,
J.
,
Williams
,
S. W.
,
Gu
,
H.
,
Bai
,
J.
,
Zhai
,
Y.
, and
Ma
,
P.
,
2016
, “
The Strengthening Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on the Additively Manufactured Al–6.3Cu Alloy
,”
Mater. Sci. Eng. A
,
651
, pp.
18
26
.
26.
Hönnige
,
J. R.
,
Colegrove
,
P.
, and
Williams
,
S.
,
2016
, “
Improvement of Microstructure and Mechanical Properties in Wire + Arc Additively Manufactured Ti-6Al-4V With Machine Hammer Peening
,”
Procedia Eng.
,
216
, pp.
8
17
.
27.
Yadav
,
A.
,
Srivastava
,
M.
,
Jain
,
P. K.
, and
Rathee
,
S.
,
2024
, “
Microstructure and Tribological Behaviour of Dissimilar Steel Functional Structure Developed via Arc-Based DED Process
,”
Tribol. Int.
,
197
,
109782
.
28.
Kesarwani
,
S.
,
Yuvaraj
,
N.
, and
Niranjan
,
M. S.
,
2024
, “
Impact of Depositional Direction and Current on Microstructure and Mechanical Properties of the Bimetallic Wall of ER5356/ER4043 Fabricated by Cold Metal Transfer Based Wire Arc Additive Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
53
, pp.
17
33
.
29.
Hemachandra
,
M.
,
Thapliyal
,
S.
,
Mahammod
,
B. P.
, and
Kumar
,
A.
,
2024
, “
Influence of Microstructural Characteristics on the Mechanical and Wear Behavior of Wire Arc Additive Manufactured and Cast Eutectic Al-Si Alloy
,”
Silicon
,
16
(
6
), pp.
2441
2463
.
30.
Chakkravarthy
,
V.
, and
Jerome
,
S.
,
2020
, “
Fabrication of Preferentially Oriented Al4043 Alloy and Its Wear Anisotropy
,”
Mater. Lett.
,
280
, p.
128578
.
31.
Tang
,
G.
,
Ou
,
Z.
,
Liu
,
F.
,
Li
,
T.
,
Su
,
F.
,
Zheng
,
J.
, and
Liang
,
Z.
,
2024
, “
Enhancing Wear Resistance of Aluminum Alloy by Fabricating a Ti-Al Modified Layer via Surface Mechanical Attrition Treatment
,”
Tribol. Int.
,
193
, p.
109462
.
32.
Hassanzadeh-Tabrizi
,
S. A.
,
2023
, “
Precise Calculation of Crystallite Size of Nanomaterials: A Review
,”
J. Alloys Compd.
,
968
, p.
171914
.
33.
Uvarov
,
V.
, and
Popov
,
I.
,
2007
, “
Metrological Characterization of X-Ray Diffraction Methods for Determination of Crystallite Size in Nano-Scale Materials
,”
Mater. Charact.
,
58
(
10
), pp.
883
891
.
34.
Bheekya Naik
,
R.
,
Venkateswara Reddy
,
K.
,
Madhusudhan Reddy
,
G.
, and
Arockia Kumar
,
R.
,
2021
, “
Microstructure, Mechanical and Wear Properties of Friction Stir Processed Cu-1.0%Cr Alloys
,”
Fusion Eng. Des.
,
164
, p.
112202
.
35.
Ajayi
,
O.
, and
Lorenzo-Martin
,
C.
,
2017
, “
Enhancement of Bronze Alloy Surface Properties by FSP Second-Phase Particle Incorporation
,”
Wear
,
376–377
, pp.
1055
1063
.
36.
Seth
,
P. P.
,
Parkash
,
O.
, and
Kumar
,
D.
,
2020
, “
Structure and Mechanical Behavior of In Situ Developed Mg2Si Phase in Magnesium and Aluminum Alloys—A Review
,”
RSC Adv.
,
10
(
61
), pp.
37327
37345
.
37.
Zhang
,
X.
,
Li
,
A.
,
Li
,
X.
,
Zhang
,
D.
,
Bi
,
G.
,
Fang
,
D.
,
Ding
,
X.
, and
Sun
,
J.
,
2024
, “
Fully Equiaxed Grain Structure and Isotropic Mechanical Properties in Wire Arc Additive Manufactured Mg–Al-RE Alloy
,”
J. Mater. Res. Technol.
,
31
, pp.
3998
4011
.
38.
Ji
,
F.
,
Hu
,
Z.
,
Qin
,
X.
,
Mao
,
N.
,
Xiong
,
X.
, and
Liu
,
G.
,
2023
, “
Improving Microstructure and Mechanical Properties of Thin-Wall Part Fabricated by Wire Arc Additive Manufacturing Assisted With High-Intensity Ultrasound
,”
J. Mater. Sci.
,
58
(
6
), pp.
1
15
.
39.
Matos
,
R.
,
Mendes
,
J.
,
Kuffner
,
B.
,
Melo, Mirian De
,
L.
, and
Silva
,
G.
,
2020
, “
Recrystallization Study of the Al4.5wt%Cu Alloy Conventionally and Unidirectionally Solidified, Deformed and Heat Treated
,”
Mater. Res.
, p.
23
(
5
).
40.
Zhang
,
X.
,
He
,
Y.
, and
Wei
,
Y.
,
2023
, “
Adopting Continuous Multi-Pass Friction Stir Processing to Enhance the Wire-Arc Additive Manufactured ER2319 Thin-Walled Part
,”
CIRP J. Manuf. Sci. Technol.
,
46
, pp.
230
241
.
41.
Wroński
,
M.
,
Wierzbanowski
,
K.
,
Malik
,
R.
,
Wroński
,
S.
,
Wojtas
,
D.
,
Baczmański
,
A.
, and
Tarasiuk
,
J.
,
2021
, “
Microstructure Characteristics of ECAP Processed 1050 Aluminum After Deformation and 5 Years Later
,”
Met. Mater. Int.
,
27
(
8
), pp.
2720
2731
.
42.
Singh
,
B.
,
Saxena
,
K. K.
,
Singhal
,
P.
, and
Tilak
,
C. J.
,
2021
, “
Role of Various Tool Pin Profiles in Friction Stir Welding of AA2024 Alloys
,”
J. Materi. Eng. Perform.
,
30
(
11
), pp.
8606
8615
.
43.
Kumar
,
S.
,
Chakradhar
,
D.
, and
Narendranath
,
S.
,
2021
, “
Analysis of the Effect of Friction Stir Welding Parameters on Characteristics of AA6061 Composites Using Response Surface Methodology
,”
Trans. Indian Inst. Met.
,
74
(
6
), pp.
1303
1319
.
44.
Yuvaraj
,
N.
,
Vipin
,
.
, and
Mishra
,
R. S.
,
2016
, “
Effect of Number of Passes on Mechanical and Wear Properties of Friction Stir Processed Al 1050 Alloy
,”
Int. J. Adv. Res. Innov.
,
4
(
2
), pp.
159
165
.
45.
Li
,
L.
,
Etsion
,
I.
, and
Talke
,
F. E.
,
2010
, “
Contact Area and Static Friction of Rough Surfaces With High Plasticity Index
,”
ASME J. Tribol.
,
132
(
3
), p.
031401
.
46.
Teng
,
J.
,
Jiang
,
P.
,
Cong
,
Q.
,
Cui
,
X.
,
Nie
,
M.
,
Li
,
X.
, and
Zhang
,
Z.
,
2024
, “
A Comparison on Microstructure Features, Compression Property and Wear Performance of TC4 and TC11 Alloys Fabricated by Multi-Wire Arc Additive Manufacturing
,”
J. Mater. Res. Technol.
,
29
, pp.
2175
2187
.
47.
Chen
,
X.
,
Han
,
Z.
,
Li
,
X.
, and
Lu
,
K.
,
2020
, “
Friction of Stable Gradient Nano-Grained Metals
,”
Scr. Mater.
,
185
, pp.
82
87
.
48.
Vedabouriswaran
,
G.
, and
Aravindan
,
S.
,
2019
, “
Wear Characteristics of Friction Stir Processed Magnesium RZ 5 Composites
,”
ASME J. Tribol.
,
141
(
4
), p.
041601
.
49.
Koli
,
Y.
,
Aravindan
,
S.
, and
Rao
,
P. V.
,
2023
, “
Wear Characteristics of Wire-Arc Additive Manufactured SS308L
,”
ASME J. Tribol.
,
145
(
3
), p.
031706
.
50.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
51.
Baby
,
A. K.
,
Priyaranjan
,
M.
,
Deepak Lawrence
,
K.
, and
Rajendrakumar
,
P.
,
2021
, “
Tribological Behaviour of Hypereutectic Al-Si Automotive Cylinder Liner Material Under Dry Sliding Wear Condition in Severe Wear Regime
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
7
), pp.
1450
1462
.
52.
Kumar
,
T. S.
,
Thankachan
,
T.
,
Shalini
,
S.
,
Robert
,
C.
, and
Kanak
,
K.
,
2023
, “
Microstructure, Hardness and Wear Behavior of ZrC Particle Reinforced AZ31 Surface Composites Synthesized via Friction Stir Processing
,”
Sci. Rep.
,
13
(
1
), p.
20089
.
You do not currently have access to this content.