Graphical Abstract Figure

Dynamic model of the inner race developed in an ERSFD combined ball bearing: (a) radial plane; (b) motion of the inner race; (c) forces on the ball; (d) axial plane; (e) contact elastic deformation; and (f) cross-sectional plane

Graphical Abstract Figure

Dynamic model of the inner race developed in an ERSFD combined ball bearing: (a) radial plane; (b) motion of the inner race; (c) forces on the ball; (d) axial plane; (e) contact elastic deformation; and (f) cross-sectional plane

Close modal

Abstract

This paper aims at the inner race dynamics of a high-speed ball bearing incorporated with Elastic Ring Squeeze Film Damper (ERSFD). A dynamic model of the inner race with three degrees-of-freedom (DOFs) is established in an ERSFD-integrated ball bearing. The ball contact force and operating contact angle are characterized using an improved quasi-static model, which includes the motion of the outer race when establishing the geometric relationship between bearing displacement and contact elastic deformation. Numerical simulations were performed for bearings with or without ERSFD. The model was validated using Campbell diagram and measured displacement response and center trajectory of the inner race at different rotor speeds. The results show that the ERSFD provides adequate stable traction on the ball and limits excessive increase in the inner race contact angle. Such load-carrying condition benefits for decrease in ball orbital revolution skid at high rotor speeds. The ERSFD enables rotor's unbalance force to dominate bearing motion, resulting in stable periodic motion of the inner race at high rotor speeds. For ball bearings without ERSFD, the inner race possesses stable motion at low and moderate rotor speeds, but is more prone to instability at high rotor speeds.

References

1.
Gupta
,
P. K.
,
1984
,
Advanced Dynamics of Rolling Elements
,
Springer-Verlag
,
New York
.
2.
Flouros
,
M.
,
2005
, “
The Impact of Oil and Sealing Air Flow, Chamber Pressure, Rotor Speed, and Axial Load on the Power Consumption in an Aeroengine Bearing Chamber
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
182
186
.
3.
Wang
,
L.
,
Cui
,
L.
,
Gu
,
L.
, and
Zheng
,
D.
,
2008
, “
Study on Dynamic Characteristics of Angular Ball Bearing With Non-Linear Vibration of Rotor System
,”
Proc. Inst. Mech. Eng., Part C-J. Mech. Eng. Sci.
,
222
(
9
), pp.
1811
1819
.
4.
Jovanović
,
J. D.
, and
Tomović
,
R. N.
,
2014
, “
Analysis of Dynamic Behaviour of Rotor-Bearing System
,”
Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci.
,
228
(
12
), pp.
2141
2161
.
5.
Cole
,
M. O. T.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
,
2002
, “
The Dynamic Behavior of a Rolling Element Auxiliary Bearing Following Rotor Impact
,”
ASME J. Tribol.
,
124
(
2
), pp.
406
413
.
6.
Villa
,
C.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2008
, “
Stability and Vibration Analysis of a Complex Flexible Rotor Bearing System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
4
), pp.
804
821
.
7.
Sinou
,
J. J.
,
2009
, “
Non-Linear Dynamics and Contacts of an Unbalanced Flexible Rotor Supported on Ball Bearings
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1713
1732
.
8.
Fukata
,
S.
,
Gad
,
E. H.
,
Kondou
,
T.
,
Ayabe
,
T.
, and
Tamura
,
H.
,
1985
, “
On the Radial Vibration of Ball-Bearings—Computer-Simulation
,”
Bull. JSME-Japan Society of Mech. Eng.
,
28
(
239
), pp.
899
904
.
9.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
,
238
(
5
), pp.
723
756
.
10.
Xu
,
H.
,
Yang
,
Y.
,
Ma
,
H.
,
Luo
,
Z.
,
Li
,
X.
,
Han
,
Q.
, and
Wen
,
B.
,
2022
, “
Vibration Characteristics of Bearing-Rotor Systems With Inner Ring Dynamic Misalignment
,”
Int. J. Mech. Sci.
,
230
, p.
107536
.
11.
Upadhyay
,
S. H.
,
Jain
,
S. C.
, and
Harsha
,
S. P.
,
2009
, “
Chaos and Nonlinear Dynamic Analysis of High-Speed Rolling Element Bearings Due to Varying Number of Rolling Elements
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
10
(
3
), pp.
323
332
.
12.
Deng
,
S.
,
Zhu
,
X.
,
Qian
,
D.
,
Wang
,
F.
, and
Hua
,
L.
,
2023
, “
Nonlinear Dynamic Correlation Between Balls, Cage and Bearing Rings of Angular Contact Ball Bearings at Different Number of Balls and Groove Curvature Radii
,”
Nonlinear Dyn.
,
111
(
4
), pp.
3207
3237
.
13.
Wang
,
K.
,
Yang
,
H.
,
Wu
,
H.
, and
Jiang
,
S.
,
2022
, “
Theoretical Model and Experimental Study of the Influence of Bearing Inner Clearance on Bearing Vibration
,”
Eng. Fail. Anal.
,
137
, p.
106247
.
14.
Chen
,
H.
,
Zhong
,
S.
,
Lu
,
Z.
,
Chen
,
Y.
, and
Liu
,
X.
,
2021
, “
Analysis on Multimode Nonlinear Resonance of an Asymmetric Rolling Bearing Rotor With the Application of a Squeeze Film Damper
,”
Shock Vib.
,
2021
(
1
), p.
4370981
.
15.
Ma
,
L.
,
Zhang
,
J.
,
Lin
,
J.
,
Wang
,
J.
, and
Lu
,
X.
,
2016
, “
Dynamic Characteristics Analysis of a Misaligned Rotor-Bearing System With Squeeze Film Dampers
,”
J. Zhejiang Univ. Sci. A
,
17
(
8
), pp.
614
631
.
16.
Conley
,
B.
, and
Sadeghi
,
F.
,
2021
, “
Experimental and Analytical Investigation of Turbocharger Whirl and Dynamics
,”
Tribol. Trans.
,
64
(
2
), pp.
239
252
.
17.
Brouwer
,
M.
, and
Sadeghi
,
F.
,
2017
, “
Investigation of Turbocharger Dynamics Using a Combined Explicit Finite and Discrete Element Method Rotor–Cartridge Model
,”
ASME J. Tribol.
,
139
(
1
), p.
012201
.
18.
Han
,
Z.
,
Ma
,
Z.
,
Zhang
,
W.
,
Han
,
B.
, and
Ding
,
Q.
,
2020
, “
Dynamic Analysis of an Elastic Ring Squeeze Film Damper Supported Rotor Using a Semi-Analytic Method
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
1263
1278
.
19.
Han
,
Q.
,
Wang
,
H.
,
Lu
,
H.
,
Zhao
,
Y.
, and
Luo
,
Z.
,
2022
, “
Progress Review on Nonlinear Dynamic Analyses and Optimization for Large-Scale Squeeze Film Dampers
,”
J. Dyn. Control
,
20
(
5
), pp.
1
19
.
20.
Chen
,
W.
,
Chen
,
S.
,
Hu
,
Z.
,
Tang
,
J.
, and
Li
,
H.
,
2019
, “
A Novel Dynamic Model for the Spiral Bevel Gear Drive With Elastic Ring Squeeze Film Dampers
,”
Nonlinear Dyn.
,
98
(
2
), pp.
1081
1105
.
21.
Harris
,
T. A.
, and
Mindel
,
M. H.
,
1973
, “
Rolling Element Bearing Dynamics
,”
Wear
,
23
(
3
), pp.
311
337
.
22.
Yang
,
X.
,
Jiang
,
B.
,
Li
,
Y.
,
Zhao
,
Q.
,
Deng
,
S.
,
Zhang
,
W.
, and
Cui
,
Y.
,
2022
, “
Dynamic Characteristics of Elastic Ring Squeeze Film Damper Coupled High-Speed Ball Bearings
,”
J. Sound Vib.
,
537
, p.
117186
.
23.
Yang
,
X.
,
Yang
,
H.
,
Cui
,
Y.
,
Li
,
Y.
,
Jiang
,
B.
, and
Deng
,
S.
,
2022
, “
Pressure Performance for a Thin-Walled Ring and Turbulent-Jet Orifice Modeled Elastic Squeeze Film Damper
,”
Chin. J. Aeronaut.
,
35
(
11
), pp.
235
251
.
24.
Deng
,
S.
,
Jia
,
Q.
, and
Xue
,
J.
,
2014
,
Design Principle of Rolling Bearing
,
China Standard Press
,
Beijing
.
You do not currently have access to this content.