The adiabatic, steady-state liquid crystal technique was used to measure surface adiabatic film cooling effectiveness values in the near-hole region X/D<10. A parametric study was conducted for a single row of short holes L/D3 fed by a narrow plenum H/D=1. Film cooling effectiveness values are presented and compared for various L/D ratios (0.66 to 3.0), three different blowing ratios (0.5, 1.0, and 1.5), two different plenum feed configurations (co-flow and counterflow), and two different injection angles (35 and 90 deg). Injection hole geometry and plenum feed direction were found to affect short hole film cooling performance significantly. Under certain conditions, similar or improved coverage was achieved with 90 deg holes compared with 35 deg holes. This result has important implications for manufacturing of thin-walled film-cooled blades or vanes. [S0889-504X(00)00603-6]

1.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
, pp.
358
368
.
2.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 1—Results Downstream of Two Staggard Rows of Holes With 3d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
, pp.
341
352
.
3.
Ligrani
,
P. M.
,
Wigle
,
J. M.
, and
Jackson
,
S. M.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 2—Results Downstream of a Single Row of Holes With 6d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
, pp.
353
362
.
4.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transf.
,
17
, pp.
595
607
.
5.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
, pp.
209
216
.
6.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1989
, “
Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
111
, pp.
139
145
.
7.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
, pp.
437
443
.
8.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
, pp.
442
449
.
9.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
, pp.
800
806
.
10.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
, pp.
807
813
.
11.
Bons
,
J. P.
,
MacArthur
,
C. S.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
, pp.
814
825
.
12.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
,”
ASME J. Turbomach.
,
119
, pp.
352
358
.
13.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
1997
, “
A Systematic Computational Methodology Applied to a Three-Dimensional Film-Cooling Flowfield
,”
ASME J. Turbomach.
,
119
, pp.
777
785
.
14.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
, pp.
102
112
.
15.
Berhe, M. K., and Patankar, S. V., 1996, “A Numerical Study of Discrete-Hole Film Cooling,” ASME Paper No. 96-WA/HT-8.
16.
Ferguson, J. D., Walters, D. K., and Leylek, J. H., 1998, “Performance of Turbulence Models and Near-Wall Treatments in Discrete Jet Film Cooling Simulations,” ASME Paper No. 98-GT-438.
17.
Gogineni, S. P., Rivir, R. B., Pestian, D. J., and Goss, L. P., 1996, “PIV Measurements of Flat Plate Film Cooling Flows With High Free Stream Turbulence,” AIAA Paper No. 96-0617.
18.
Wittig, S., Schulz, A., Gritsch, M., and Thole, K. A., 1996, “Transonic Film-Cooling Investigations: Effects of Hole Shapes and Orientations,” ASME Paper No. 96-GT-222.
19.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
327
336
.
20.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
, pp.
533
540
.
21.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
549
555
.
22.
Giebert, D., Gritsch, M., Shulz, A., and Wittig, S., 1997, “Film-Cooling From Holes With Expanded Exits: A Comparison of Computational Results With Experiments,” ASME Paper No. 97-GT-163.
23.
Kohli, A., and Thole, K. A., 1997, “A CFD Investigation on the Effects of Entrance Crossflow Direction to Film-Cooling Holes,” Proc. 32nd National Heat Transfer Conference, ASME HTD-Vol. 12, pp. 223–232.
24.
Kohli, A., and Thole, K. A., 1998, “Entrance Effects on Diffused Film Cooling Holes,” ASME Paper No. 98-GT-402.
25.
Burd, S. W., Kaszeta, R. W., and Simon, T. W., 1996, “Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects,” ASME Paper No. 96-WA/HT-7.
26.
Burd, S. W., and Simon, T. W., 1997, “The Influence of Film Cooling Supply Geometry on Film Coolant Exit and Surface Adiabatic Effectiveness,” ASME Paper No. 97-GT-25.
27.
Burd
,
S. W.
, and
Simon
,
T. W.
,
1999
, “
Measurements of Discharge Coefficients in Film Cooling
,”
ASME J. Turbomach.
,
121
, pp.
243
248
.
28.
Burd
,
S. W.
, and
Simon
,
T. W.
,
1999
, “
Turbulence Spectra and Length Scales Measured in Film Coolant Flows Emerging From Discrete Holes
,”
ASME J. Turbomach.
,
121
, pp.
551
557
.
29.
Wolochuk, M. C., Plesniak, M. W., and Braun, J. E., 1994, “Evaluation of Vortex Shedding Flow Meters for HVAC Applications,” Purdue University Report ME-TSPC/HERL-TR-94-1.
30.
Wolochuk
,
M. C.
,
Plesniak
,
M. W.
, and
Braun
,
J. E.
,
1996
, “
The Effects of Turbulence and Unsteadiness on Vortex Shedding from Sharp-Edged Bluff Bodies
,”
ASME J. Fluids Eng.
,
118
, pp.
18
25
.
31.
White, F. M. 1974, Viscous Fluid Flow, McGraw-Hill, New York.
32.
Kline, S. J., and McClintock, S. J., 1953, “Describing Uncertainties in Single-sample Experiments,” Mech. Eng., Jan., pp. 3–8.
33.
Brundage, A. L., Plesniak, M. W., and Ramadhyani, S., 1999, “Influence of Coolant Feed Direction and Hole Length on Film Cooling Jet Velocity Profiles,” ASME Paper No. 99-GT-35.
You do not currently have access to this content.