Abstract

Increasingly harsh turbine environments necessitate the design of more advanced cooling techniques as well as the prediction of those cooling schemes' performance at engine conditions. For several decades, film cooling design has been accelerated through a low-order superposition of adiabatic effectiveness in order to quickly approximate the combined effect of multiple rows of cooling holes, the individual rows of which have already been characterized. While that legacy technique can approximately superpose the benefits of multiple rows of external film cooling holes, it is unable to superpose the added benefits of additional internal cooling features. This limitation of traditional film cooling superposition has been overcome with a new technique that allows superposition of overall effectiveness, which is influenced by both external film cooling and internal cooling. In this article, the new overall effectiveness superposition technique is evaluated in a turbine airfoil leading edge showerhead region. The superposition technique is effective at predicting the added benefit of an additional row of cooling holes in the leading-edge region along with the associated internal cooling that accompanies the additional row of cooling holes. Special care must be taken, however, due to pressure gradients associated with the leading-edge curvature.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME Turbo Expo 2004
, Paper No. GT2004-5398.
3.
Fuqua
,
M. N.
, and
Rutledge
,
J. L.
,
2022
, “
Characterization of Overall Effectiveness Under the Influence of Two Coolant Temperatures
,”
ASME J. Turbomach.
,
144
(
2
), p.
121004
.
4.
Fischer
,
J. P.
,
McNamara
,
L. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2020
, “
Scaling Flat Plate, Low-Temperature Adiabatic Effectiveness Results Using the Advective Capacity Ratio
,”
ASME J. Turbomach.
,
142
(
8
), p.
081010
.
5.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
6.
Muska
,
J. F.
,
Fish
,
R. W.
, and
Suo
,
M.
,
1976
, “
The Additive Nature of Film Cooling From Rows of Holes
,”
ASME J. Eng. Power
,
98
(
4
), pp.
457
464
.
7.
Jagerhofer
,
P. R.
,
Glasenapp
,
T.
,
Patzer
,
B.
, and
Göttlich
,
E.
,
2023
, “
Heat Transfer and Film Cooling in an Aggressive Turbine Center Frame
,”
ASME J. Turbomach.
,
145
(
12
), p.
021012
.
8.
Elmukashfi
,
E.
,
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Cocks
,
A. C. F.
,
2020
, “
Analysis of the Thermomechanical Stresses in Double-Wall Effusion Cooled Systems
,”
ASME J. Turbomach.
,
142
(
5
), p.
151002
.
9.
Anderson
,
J. B.
,
Winka
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
2015
, “
Evaluation of Superposition Predictions for Showerhead Film Cooling on a Vane
,”
ASME J. Turbomach.
,
137
(
4
), p.
141010
.
10.
Fuqua
,
M. N.
, and
Rutledge
,
J. L.
,
2021
, “
Film Cooling Superposition Theory for Multiple Rows of Cooling Holes With Multiple Coolant Temperatures
,”
ASME J. Turbomach.
,
143
(
11
), p.
111003
.
11.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
246
.
12.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
798
805
.
13.
Fuqua
,
M. N.
, and
Rutledge
,
J. L.
,
2024
, “
A Superposition Technique for Predicting Overall Effectiveness With Multiple Sources of Individually Characterized Internal and External Coolant Flows
,”
ASME J. Turbomach.
,
146
(
12
), p.
121008
.
14.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2022
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME J. Turbomach.
,
144
(
12
), p.
121003
.
15.
Rutledge
,
J. L.
,
Fuqua
,
M. N.
,
Polanka
,
M. D.
, and
Baker
,
W. P.
,
2023
, “
A Resistive Model to Characterize Overall Effectiveness Influenced By Multiple Coolant Temperatures
,”
ASME J. Turbomach.
,
145
(
2
), p.
021004
.
16.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
17.
Dyson
,
T. E.
,
Bogard
,
D. G.
,
Piggush
,
J. D.
, and
Kohli
,
A.
,
2013
, “
Overall Effectiveness for a Film Cooled Turbine Blade Leading Edge With Varying Hole Pitch
,”
ASME J. Turbomach.
,
135
(
3
), p.
031011
.
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
1
8
.
19.
Bryant
,
C. E.
,
Wiese
,
C. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2019
, “
Experimental Evaluations of the Relative Contributions to Overall Effectiveness in Turbine Blade Leading Edge Cooling
,”
ASME J. Turbomach.
,
141
(
4
), p.
041007
.
20.
Rutledge
,
J. L.
,
King
,
P. I.
, and
Rivir
,
R. B.
,
2012
, “
Influence of Film Cooling Unsteadiness on Turbine Blade Leading Edge Heat Flux
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071901
.
You do not currently have access to this content.