Abstract

This article presents a three-dimensional semianalytic cascade model for the prediction of rotor–stator interaction noise, which includes the effects of radially variable sweep angle and chord length to better account for the latest trends in the fan-stage stator design of turbofan aero-engines. The theoretical modeling and solution method are first introduced, with special attention paid to the singularity problem brought by the nonuniformity of the stator vanes in the radial direction. The tonal rotor–stator interaction noise for stators with a radially varying sweep angle or a radially varying chord length is then calculated and analyzed. It is discovered that the phase variation in unsteady pressure loading near the stator leading edge greatly affects the resulting tonal interaction noise, while the sweep of a stator trailing edge shows less influence on the rotor–stator interaction. The duct mode characteristic of the cut-on modes has proved to be an important factor in the design of a swept stator. In addition, the soft vane design can further reduce the tonal interaction noise on a swept stator cascade.

References

1.
Peake
,
N.
, and
Parry
,
A. B.
,
2012
, “
Modern Challenges Facing Turbomachinery Aeroacoustics
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
227
248
.
2.
Woodward
,
R. P.
,
Elliott
,
D. M.
,
Hughes
,
C. E.
, and
Berton
,
J. J.
,
2001
, “
Benefits of Swept-and-Leaned Stators for Fan Noise Reduction
,”
J. Aircr.
,
38
(
6
), pp.
1130
1138
.
3.
Envia
,
E.
,
2002
, “
Fan Noise Reduction: An Overview
,”
Int. J. Aeroacoust.
,
1
(
1
), pp.
43
64
.
4.
Jones
,
M.
,
Parrott
,
T.
,
Sutliff
,
D.
, and
Hughes
,
C.
,
2009
, “
Assessment of Soft Vane and Metal Foam Engine Noise Reduction Concepts
,”
15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
,
Miami, FL
,
May 11–13
, Paper No. AIAA 2009–3142.
5.
Elliott
,
D. M.
,
Woodward
,
R. P.
, and
Podboy
,
G. G.
,
2009
, “
Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flight Conditions
,”
15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
,
Miami, FL
,
May 11–13
, Paper No. AIAA 2009–3140.
6.
Jones
,
M. G.
, and
Howerton
,
B. M.
,
2016
, “
Evaluation of Novel Liner Concepts for Fan and Airframe Noise Reduction
,”
22nd AIAA/CEAS Aeroacoustics Conference
,
Lyon, France
,
May 30–June 1
, Paper No. AIAA 2016–2787.
7.
Reba
,
R.
, and
Morin
,
B.
,
2008
, “
The Gust Response of an Acoustically Treated Flat-Plate Cascade
,”
14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
,
Vancouver, BC, Canada
,
May 5–7
, Paper No. AIAA 2008–2898.
8.
Baddoo
,
P. J.
, and
Ayton
,
L. J.
,
2020
, “
Acoustic Scattering by Cascades With Complex Boundary Conditions: Compliance, Porosity and Impedance
,”
J. Fluid Mech.
,
898
, p.
A16
.
9.
Shen
,
Z.
,
Wang
,
X.
,
Sun
,
Y.
,
Zhang
,
G.
, and
Sun
,
X.
,
2022
, “
Three-Dimensional Effects of Cascade Perforations on Rotor–Stator Interaction Noise
,”
J. Fluid Mech.
,
952
, p.
A7
.
10.
Shen
,
Z.
,
Zhu
,
L.
,
Wang
,
X.
, and
Sun
,
X.
,
2023
, “
On the Application of a Soft-Vane Cascade Model in Rotor-Stator Interaction Noise Prediction
,”
Int. J. Gas Turbine Propuls. Power Syst.
,
15
(
2
), pp.
26
34
.
11.
Schulten
,
J.
,
1982
, “
Sound Generated by Rotor Wakes Interacting With a Leaned Vane Stator
,”
AIAA J.
,
20
(
10
), pp.
1352
1358
.
12.
Schulten
,
J. B.
,
1997
, “
Vane Sweep Effects on Rotor/Stator Interaction Noise
,”
AIAA J.
,
35
(
6
), pp.
945
951
.
13.
Envia
,
E.
, and
Nallasamy
,
M.
,
1999
, “
Design Selection and Analysis of a Swept and Leaned Stator Concept
,”
J. Sound Vib.
,
228
(
4
), pp.
793
836
.
14.
Elhadidi
,
B.
, and
Atassi
,
H. M.
,
2005
, “
Passive Control for Turbofan Tonal Noise
,”
AIAA J.
,
43
(
11
), pp.
2279
2292
.
15.
Zhang
,
W.
,
Wang
,
X.
,
Jing
,
X.
,
Liang
,
A.
, and
Sun
,
X.
,
2017
, “
Three-Dimensional Analysis of Vane Sweep Effects on Fan Interaction Noise
,”
J. Sound Vib.
,
391
, pp.
73
94
.
16.
Zhang
,
W.
,
Wang
,
X.
, and
Sun
,
X.
,
2015
, “
Predictions of Fan Broadband Noise Using Lifting Surface Method
,”
AIAA J.
,
53
(
10
), pp.
2845
2855
.
17.
Tong
,
F.
,
Qiao
,
W.
,
Xu
,
K.
,
Wang
,
L.
,
Chen
,
W.
, and
Wang
,
X.
,
2018
, “
On the Study of Wavy Leading-Edge Vanes to Achieve Low Fan Interaction Noise
,”
J. Sound Vib.
,
419
, pp.
200
226
.
18.
Casalino
,
D.
,
Avallone
,
F.
,
Gonzalez-Martino
,
I.
, and
Ragni
,
D.
,
2019
, “
Aeroacoustic Study of a Wavy Stator Leading Edge in a Realistic Fan/OGV Stage
,”
J. Sound Vib.
,
442
, pp.
138
154
.
19.
Glegg
,
S.
,
1999
, “
The Response of a Swept Blade Row to a Three-Dimensional Gust
,”
J. Sound Vib.
,
227
(
1
), pp.
29
64
.
20.
Prasad
,
D.
, and
Verdon
,
J.
,
2002
, “
A Three-Dimensional Linearized Euler Analysis of Classical Wake/Stator Interactions: Validation and Unsteady Response Predictions
,”
Int. J. Aeroacoust.
,
1
(
2
), pp.
137
163
.
21.
Majumdar
,
S.
, and
Peake
,
N.
,
1996
, “
Three-Dimensional Effects in Cascade-Gust Interaction
,”
Wave Motion
,
23
(
4
), pp.
321
337
.
22.
Dahl
,
M. D.
,
2000
, “Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems.” Tech. Rep. NASA/CP-2000-209790, NASA Glenn Research Center.
23.
Goldstein
,
M.
,
1976
,
Aeroacoustics
,
McGraw-Hill International Book Co
,
New York
.
24.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,” Pre-1964 SAE Technical Papers,
SAE International
, pp.
309
332
.
25.
Namba
,
M.
,
1977
, “
Three-Dimensional Analysis of Blade Force and Sound Generation for an Annular Cascade in Distorted Flows
,”
J. Sound Vib.
,
50
(
4
), pp.
479
508
.
26.
Namba
,
M.
,
1987
, “Three Dimensional Flows, AGARD Manual on Aeroelasticity in Axial-Flow Turbomachinery Aerodynamics, Volume 1: Unsteady Turbomachinery Aerodynamics.” Tech. Rep. AGARD-AG-298, Advisory Group for Aerospace Research and Development.
27.
Rienstra
,
S. W.
,
1992
, “
A Note on the Kutta Condition in Glauert's Solution of the Thin Aerofoil Problem
,”
J. Eng. Math.
,
26
, pp.
61
69
.
28.
Whitehead
,
D. S.
,
1962
, “Force and Moment Coefficients for Vibrating Aerofoils in Cascade.” Tech. Reports and Memoranda No. 3254, Aeronautical Research Council.
29.
Morfey
,
C.
,
1971
, “
Acoustic Energy in Non-Uniform Flows
,”
J. Sound Vib.
,
14
(
2
), pp.
159
170
.
You do not currently have access to this content.