Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Qualitative and quantitative visualizations of transonic turbomachinery flows provide essential information on compressibility and Mach number effects on boundary layer development, shock-boundary layer interactions, and trailing edge flows. Background oriented Schlieren (BOS) is a relatively new optical technique that allows capturing unsteady density gradient fields through turbomachinery cascades and thus quantitative experimental data to validate transonic and supersonic blade designs. However, only very few experimental works in the open literature have successfully applied BOS to transonic turbine or compressor flows. The current study presents the application of BOS to a transonic low-pressure turbine cascade, the VKI SPLEEN C1 cascade for a range of Reynolds numbers (70,000–140,000) and transonic Mach numbers (0.90–1.00). The linear turbine cascade is tested at the von Karman Institute in the S-1/C high-speed wind tunnel. The test section is instrumented with different BOS optical setups to visualize the time-resolved density gradients through the turbine passage and at the trailing edge plane with dedicated field of views. The BOS images are processed using the classical cross-correlation algorithm, and the optical flow approach, recently introduced in BOS applications to gain spatial resolution and increased sensitivity. Steady-state density gradients of the cascade flow characterize the airfoil boundary layers, wakes, and shock waves. The results from the two data reduction methods are assessed and compared against available RANS CFD predictions. Time-resolved measurements reveal the low-frequency motion of weak shock waves generated in the blade passage using proper orthogonal decomposition (POD) and spectra analysis.

References

1.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
.
2.
Hodson
,
H.
, and
Howell
,
R.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
3.
Gier
,
J.
, and
Hubner
,
N.
,
2005
, “
Design and Analysis of a High Stage Loading Five-Stage LP Turbine Rig Employing Improved Transition Modeling
,”
Turbo Expo: Power for Land, Sea, and Air
,
Reno, NV
, pp.
759
769
.
4.
Martinstetter
,
M.
,
Niehuis
,
R.
, and
Franke
,
M.
,
2010
, “
Passive Boundary Layer Control on a Highly Loaded Low Pressure Turbine Cascade
,”
Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
, pp.
1315
1326
.
5.
Boerner
,
M.
, and
Niehuis
,
R.
,
2021
, “
Dynamics of Shock Waves Interacting With Laminar Separated Transonic Turbine Flow Investigated by High-Speed Schlieren and Surface Hot-Film Sensors
,”
ASME J. Turbomach.
,
143
(
5
), p.
051010
.
6.
Schultz
,
D.
,
Ashworth
,
D.
,
LaGraff
,
J.
,
Johnson
,
A.
, and
Rigby
,
M.
,
1986
, “
Wake and Shock Interactions in a Transonic Turbine Stage
,” AGARD 68th (B) Specialists’ Meeting, Transonic and Supersonic Phenomena in Turbomachines, Paper No. 3.
7.
Mee
,
D.
,
Baines
,
N.
,
Oldfield
,
M.
, and
Dickens
,
T.
,
1992
, “
An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade
,”
ASME J. Turbomach.
,
114
(
1
), pp.
155
162
.
8.
Povey
,
T.
,
Oldfield
,
M.
, and
Haselbach
,
F.
,
2008
, “
Transonic Turbine Vane Tests in a New Miniature Cascade Facility
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
222
(
5
), pp.
529
539
.
9.
Sieverding
,
C.
,
Richard
,
H.
, and
Desse
,
J.
,
2003
, “
Turbine Blade Trailing Edge Flow Characteristics at High Subsonic Outlet Mach Number
,”
ASME J. Turbomach.
,
125
(
2
), pp.
298
309
.
10.
Melzer
,
A.
, and
Pullan
,
G.
,
2019
, “
The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
141
(
4
), p.
041001
.
11.
Rossiter
,
A.
,
Pullan
,
G.
, and
Melzer
,
A.
,
2023
, “
The Influence of Boundary Layer State and Trailing Edge Wedge Angle on the Aerodynamic Performance of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
145
(
4
), p.
041008
.
12.
Raffel
,
M.
,
2015
, “
Background-Oriented Schlieren (BOS) Techniques
,”
Exp. Fluids
,
56
(
3
), p.
60
.
13.
Gojani
,
A.
,
Kamishi
,
B.
, and
Obayashi
,
S.
,
2013
, “
Measurement Sensitivity and Resolution for Background Oriented Schlieren During Image Recording
,”
J. Vis.
,
16
(
3
), pp.
201
207
.
14.
Elsinga
,
G.
,
van Oudheusden
,
B.
,
Scarano
,
F.
, and
Watt
,
D.
,
2004
, “
Assessment and Application of Quantitative Schlieren Methods: Calibrated Color Schlieren and Background Oriented Schlieren
,”
Exp. Fluids
,
36
(
2
), pp.
309
325
.
15.
Cakir
,
B.
,
Lavagnoli
,
S.
,
Saracoglu
,
B. H.
, and
Fureby
,
C.
,
2022
, “
Assessment and Application of Optical Flow in Background-Oriented Schlieren for Compressible Flows
,”
Exp. Fluids
,
64
(
1
), p.
11
.
16.
Alhaj
,
O.
, and
Seume
,
J.
,
2010
, “
Optical Investigation of Profile Losses in a Linear Turbine Cascade
,”
Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
, pp.
1503
1513
.
17.
Gong
,
H.
,
Xu
,
J.
,
Yu
,
K.
,
Liu
,
S.
, and
Liu
,
X.
,
2018
, “
Preliminary Measurements of Transonic Gas Turbine Linear Cascade Using Background Oriented Schlieren Technique
,”
18th International Symposium on Flow Visualization (ISFV18)
,
Zurich, Switzerland
.
18.
Sudhof
,
S.
,
Shimagaki
,
M.
,
General
,
S.
, and
Tomita
,
T.
,
2019
, “
Cascade Experiments on a Supersonic Turbine Blade Row Using Background-Oriented Schlieren Imaging
,”
32th International Symposium on Space Technology and Science
,
Fukui, Japan
.
19.
Wernet
,
M.
,
2019
, “Real-Time Background Oriented Schlieren: Catching Up With Knife Edge Schlieren,” Tech. Rep. TM-2019-220227.
20.
Simonassi
,
L.
,
Lopes
,
G.
,
Gendebien
,
S.
,
Torre
,
A.
,
Patinios
,
M.
,
Lavagnoli
,
S.
,
Zeller
,
N.
, and
Pintat
,
L.
,
2022
, “
An Experimental Test Case for Transonic Low-Pressure Turbines—Part I: Rig Design, Instrumentation and Experimental Methodology
,”
Turbo Expo: Power for Land, Sea, and Air
,
Rotterdam, Netherlands
,
2022
.
21.
Lopes
,
G.
,
Simonassi
,
L.
,
Torre
,
A.
,
Patinios
,
M.
, and
Lavagnoli
,
S.
,
2022
, “
An Experimental Test Case for Transonic Low-Pressure Turbines—Part 2: Cascade Aerodynamics at On-And Off-Design Reynolds and Mach Numbers
,”
Turbo Expo: Power for Land, Sea, and Air
,
Rotterdam, Netherlands
,
2022
.
22.
Rosafio
,
N.
,
Lopes
,
G.
,
Salvadori
,
S.
,
Lavagnoli
,
S.
, and
Misul
,
D.
,
2023
, “
RANS Prediction of Losses and Transition Onset in a High-Speed Low-Pressure Turbine Cascade
,”
Energies
,
16
(
21
).
23.
Lopes
,
G.
,
Simonassi
,
L.
, and
Lavagnoli
,
S.
,
2023
, “
Impact of Unsteady Wakes on the Secondary Flows of a High-Speed Low-Pressure Turbine Cascade
,”
Int. J. Turbomach. Propul. Power
,
8
(
4
), p.
36
.
24.
Simonassi
,
L.
,
Lopes
,
G.
, and
Lavagnoli
,
S.
,
2023
, “
Effects of Periodic Incoming Wakes on the Aerodynamics of a High-Speed Low-Pressure Turbine Cascade
,”
Int. J. Turbomach. Propul. Power
,
8
(
3
), p.
35
.
25.
Cakir
,
B. O.
,
Lavagnoli
,
S.
,
Saracoglu
,
B. H.
, and
Fureby
,
C.
,
2024
, “
Sensitivity and Resolution Response of Optical Flow-Based Background-Oriented Schlieren to Speckle Patterns
,”
Meas. Sci. Technol.
,
35
(
7
), p.
075201
.
26.
Hargather
,
M. J.
, and
Settles
,
G. S.
,
2012
, “
A Comparison of Three Quantitative Schlieren Techniques
,”
Opt. Lasers Eng.
,
50
(
1
), pp.
8
17
.
28.
Bay
,
H.
,
Ess
,
A.
,
Tuytelaars
,
T.
, and
Van Gool
,
L.
,
2008
, “
Speeded-Up Robust Features (SURF)
,”
Comput. Vis. Image Understand.
,
110
(
3
), pp.
346
359
.
29.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1379
1392
.
30.
Loeb
,
G.
,
White
,
M.
, and
Merzenich
,
M.
,
1983
, “
Spatial Cross-Correlation
,”
Biol. Cybern.
,
47
(
3
), pp.
149
163
.
31.
Keane
,
R.
, and
Adrian
,
R.
,
1992
, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
,
49
(
3
), pp.
191
215
.
32.
Scarano
,
F.
, and
Riethmuller
,
M.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
1
), pp.
S051
S060
.
33.
Davies
,
E. R.
,
2012
,
Computer and Machine Vision (Fourth Edition)
, 4th ed.,
Academic Press
,
Boston, MA
, pp.
505
522
. doi.org/10.1016/B978-0-12-386908-1.00019-7
34.
Atcheson
,
B.
,
Heidrich
,
W.
, and
Ihrke
,
I.
,
2009
, “
An Evaluation of Optical Flow Algorithms for Background Oriented Schlieren Imaging
,”
Exp. Fluids
,
46
(
3
), pp.
467
476
.
35.
Horn
,
B. K. P.
, and
Schunck
,
B. G.
,
1981
, “
Determining Optical Flow
,”
Artif. Intell.
,
17
(
1
), pp.
185
203
.
36.
Anandan
,
P.
,
1989
, “
A Computational Framework and an Algorithm for the Measurement of Visual Motion
,”
Int. J. Comput. Vis.
,
2
(
3
), pp.
283
310
.
37.
Sabnis
,
K.
, and
Babinsky
,
H.
,
2023
, “
A Review of Three-Dimensional Shock Wave–Boundary-Layer Interactions
,”
Prog. Aerosp. Sci.
,
143
, p.
100953
.
38.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.
39.
Gostelow
,
J.P.
,
Mahallati
,
A.
,
Andrews
,
S. A.
, and
Carscallen
,
W. E.
,
2009
, “
Measurement and Computation of Flowfield in Transonic Turbine Nozzle Blading With Blunt Trailing Edges
,”
Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
.
40.
Graham
,
C. G.
, and
Kost
,
F. H.
,
1979
, “
Shock Boundary Layer Interaction on High Turning Transonic Turbine Cascades
,”
Turbo Expo: Power for Land, Sea, and Air
,
San Diego, CA
.
41.
Michalek
,
J.
, and
Straka
,
P.
,
2013
, “
A Comparison of Experimental and Numerical Studies Performed on a Low-Pressure Turbine Blade Cascade at High-Speed Conditions, Low Reynolds Numbers and Various Turbulence Intensities
,”
J. Therm. Sci.
,
22
, pp.
413
423
.
42.
Saracoglu
,
B.
,
2012
, “
Turbine Base Pressure Active Control Through Trailing Edge Blowing
,” Ph.D. Thesis, Wright State University, Dayton, OH.
You do not currently have access to this content.