Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this article, a multirow film-cooling effectiveness experiment was conducted on a turbine nozzle guide vane suction surface using the pressure-sensitive paint (PSP) measurement technique. Five rows of film holes were designed at the suction side with a streamwise staggered arrangement and a 6D spanwise hole spacing. Two diffusion holes constructed based on a vertically oriented slot cross-section with 14-deg and 20-deg exit expansion angles were tested. A fan-shaped hole and a horizontally oriented slot cross-section diffusion hole were chosen as the baselines, and both had a 14-deg exit expansion angle. The experiment was carried out in a linear cascade with a mainstream Reynolds number of 62000, a mainstream turbulence intensity of 3.7%, and a coolant-to-mainstream density ratio of 1.5. The four averaged blowing ratios ranged from 0.5 to 2.0. The results showed that, regardless of the blowing ratio, under intense multirow film interactions, the vertically oriented slot cross-section diffusion holes can always produce uniform and consistent film coverage on the vane suction surface. The vertically oriented slot cross-section widens the distance between the up- and downstream walls and narrows the lateral width, thereby weakening the influence of the entrance “jetting effect.” The resulting flow pattern can adapt to a larger exit expansion angle. In addition to the smaller difference under a low blowing ratio, two vertically oriented slot cross-section diffusion holes yield prominently greater multirow effectiveness than do the horizontally oriented slot cross-section diffusion hole and conventional fan-shaped hole, in which the case with a 20-deg expansion angle performs better.

References

1.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
2.
Natsui
,
G.
,
Claretti
,
R.
,
Ricklick
,
M. A.
,
Kapat
,
J. S.
,
Crawford
,
M. E.
,
Brown
,
G.
, and
Landis
,
K.
,
2016
, “
Experimental Evaluation of Large Spacing Compound Angle Full-Coverage Film Cooling Arrays: Adiabatic Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
138
(
7
), p.
071001
.
3.
Jiang
,
Y.
,
Capone
,
L.
,
Ireland
,
P.
, and
Romero
,
E.
,
2018
, “
A Detailed Study of the Interaction Between Two Rows of Cooling Holes
,”
ASME J. Turbomach.
,
140
(
4
), p.
041008
.
4.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From MultiRow Holes
,”
ASME J. Eng. Power
,
101
(
1
), pp.
101
108
.
5.
Jubran
,
B.
, and
Brown
,
A.
,
1985
, “
Film Cooling From Two Rows of Holes Inclined in the Streamwise and Spanwise Directions
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
84
91
.
6.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 1—Results Downstream of Two Staggered Rows of Holes With 3D Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.
7.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow: Part I. Effectiveness
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4995
5016
.
8.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
, and
Dees
,
J. E.
,
2017
, “
Adiabatic Film Cooling Effectiveness Measurements Throughout Multi-Row Film Cooling Arrays
,”
ASME J. Turbomach.
,
139
(
10
), p.
101008
.
9.
Jubran
,
B. A.
, and
Maitrh
,
B. Y.
,
1999
, “
Film Cooling and Heat Transfer From a Combination of Two Rows of Simple and/or Compound Angle Holes in Inline and/or Staggered Configuration
,”
Heat Mass Transfer
,
34
(
6
), pp.
495
502
.
10.
Ahn
,
J.
,
Sung Jung
,
I.
, and
Lee
,
J. S.
,
2003
, “
Film Cooling From Two Rows of Holes With Opposite Orientation Angles: Injectant Behavior and Adiabatic Film Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
91
99
.
11.
Maiteh
,
B. Y.
, and
Jubran
,
B. A.
,
2004
, “
Effects of Pressure Gradient on Film Cooling Effectiveness From Two Rows of Simple and Compound Angle Holes in Combination
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1457
1469
.
12.
Bazdidi-Tehrani
,
F.
, and
Andrews
,
G. E.
,
1994
, “
Full-Coverage Discrete Hole Film Cooling: Investigation of the Effect of Variable Density Ratio
,”
ASME J. Eng. Gas Turbines Power
,
116
(
3
), pp.
587
596
.
13.
Bashir
,
M. H.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Film Cooling Effectiveness for Three-Row Compound Angle Hole Design on Flat Plate Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
115
(
2017
), pp.
918
929
.
14.
Wang
,
N.
,
Zhang
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2019
, “
Film Cooling Effectiveness From Two Rows of Compound Angled Cylindrical Holes Using Pressure-Sensitive Paint Technique
,”
ASME J. Heat Transfer
,
141
(
4
), p.
042202
.
15.
Saumweber
,
C.
, and
Schulz
,
S.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
246
.
16.
Wei
,
H.
,
Zu
,
Y. Q.
,
Ai
,
J. L.
, and
Ding
,
L.
,
2019
, “
Experimental Study on the Full-Coverage Film Cooling of Fan-Shaped Holes With a Constant Exit Width
,”
Int. J. Heat Mass Transfer
,
140
(
2019
), pp.
379
398
.
17.
Zhang
,
G.
,
Liu
,
J.
,
Sundén
,
B.
, and
Xie
,
G.
,
2020
, “
Improvements of the Adiabatic Film Cooling by Using Two-Row Holes of Different Geometries and Arrangements
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122101
.
18.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2019
, “
Effects of Mainstream Turbulence Intensity and Coolant-to-Mainstream Density Ratio on Film Cooling Effectiveness of Multirow Diffusion Slot Holes
,”
ASME J. Heat Transfer
,
141
(
12
), p.
122001
.
19.
Wang
,
L.
,
Li
,
X. Y.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2020
, “
The Interaction Between Upstream and Downstream Film Cooling Rows in Flow Field and Heat Transfer
,”
Int. J. Therm. Sci.
,
149
, p.
106176
.
20.
Li
,
H.
,
Zhou
,
Z.
,
Xie
,
G.
,
Xia
,
S.
, and
Tao
,
Z.
,
2021
, “
The Cooling Performance of Multiple Rows of Film Holes on the Suction Surface of a Turbine Blade Under Rotating Conditions
,”
Appl. Therm. Eng.
,
188
, p.
116125
.
21.
Meng
,
L.
,
Li
,
H.
,
Xie
,
G.
,
Tao
,
Z.
, and
Zhou
,
Z.
,
2022
, “
Film Cooling Performance of Blade Pressure Side With Three-Row Film Holes Under Rotating Condition
,”
Int. J. Heat Mass Transfer
,
188
, p.
122593
.
22.
Meng
,
L.
,
Li
,
H.
,
Xie
,
G.
,
Tao
,
Z.
, and
Zhou
,
Z.
,
2022
, “
Film Cooling Performance on Pressure Side of Turbine Blade With Different Number of Hole Rows Under Rotating State
,”
Aerosp. Sci. Technol.
,
126
, p.
107569
.
23.
Lee
,
S.
,
Rhee
,
D.-H.
,
Cha
,
B.-J.
, and
Yee
,
K.
,
2016
, “
Film Cooling Performance Improvement With Optimized Hole Arrangement on Pressure Surface Part I: Optimization & Numerical Investigation
,” ASME Paper No. GT2016-57975.
24.
Rhee
,
D. H.
,
Kang
,
Y. S.
, and
Cha
,
B. J.
,
2016
, “
Film Cooling Performance Improvement With Optimized Hole Arrangement on Pressure Surface Part II: Experimental Validation
,” ASME Paper No. GT2016-57978.
25.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2007
, “
Experimental and Computational Comparisons of Fan-Shaped Film Cooling on a Turbine Vane Surface
,”
ASME J. Turbomach.
,
129
(
1
), pp.
23
31
.
26.
Naik
,
S.
,
Krueckels
,
J.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2014
, “
Multirow Film Cooling Performances of a High Lift Blade and Vane
,”
ASME J. Turbomach.
,
136
(
5
), p.
051003
.
27.
Zhang
,
B. L.
,
Zhu
,
H. R.
,
Yao
,
C. Y.
,
Liu
,
C. L.
, and
Zhang
,
L.
,
2021
, “
Experimental Study on Film Cooling and Heat Transfer Characteristics of a Twisted Vane With Staggered Counter-Inclined Film-Hole and Laid-Back-Shaped-Hole
,”
Int. J. Heat Mass Transfer
,
176
(
2021
), p.
121377
.
28.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Blade Film-Cooling With Axial and Compound Shaped Holes
,”
ASME J. Heat Transfer
,
136
(
4
), p.
044501
.
29.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2012
, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Heat Transfer
,
134
(
8
), p.
081701
.
30.
Li
,
S. J.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Unsteady Wake With Trailing Edge Coolant Ejection on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
134
(
6
), p.
061026
.
31.
Fu
,
Z.
,
Zhu
,
H.
,
Cheng
,
L.
, and
Jiang
,
R.
,
2019
, “
Experimental Investigation on the Effect of Mainstream Turbulence on Full Coverage Film Cooling Effectiveness for a Turbine Guide Vane
,”
J. Therm. Sci.
,
28
(
1
), pp.
145
157
.
32.
Yao
,
C. Y.
,
Zhu
,
H. R.
,
Zhang
,
B. L.
, and
Liu
,
C. L.
,
2021
, “
Film Cooling Performance of a Fully Cooled Vane at High Subsonic Conditions
,”
J. Thermophys. Heat Transfer
,
35
(
2
), pp.
372
385
.
33.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
34.
Chen
,
D. W.
,
Zhu
,
H. R.
,
Liu
,
C. L.
,
Li
,
H. T.
,
Li
,
B. R.
, and
Zhou
,
D. E.
,
2019
, “
Combined Effects of Unsteady Wake and Free-Stream Turbulence on Turbine Blade Film Cooling With Laid-Back Fan-Shaped Holes Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
133
(
2019
), pp.
382
392
.
35.
Ullah
,
I.
,
Wright
,
L. M.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Gao
,
Z. H.
, and
Stanton
,
A.
,
2023
, “
Film Cooling Comparison of Full-Scale Turbine Vanes Using the Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
145
(
9
), p.
091003
.
36.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2017
, “
Geometrical Parameter Effects on Film-Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.
37.
An
,
B. T.
,
Liu
,
J. J.
, and
Zhou
,
S. J.
,
2018
, “
Effects of Inclination Angle, Orientation Angle, and Hole Length on Film Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
140
(
7
), p.
071003
.
38.
Yu
,
Z.
,
Li
,
C.
,
An
,
B.
,
Liu
,
J.
, and
Xu
,
G.
,
2020
, “
Experimental Investigation of Film Cooling Effectiveness on a Gas Turbine Blade Pressure Surface With Diffusion Slot Holes
,”
Appl. Therm. Eng.
,
168
, p.
114851
.
39.
Hu
,
J. J.
, and
An
,
B. T.
,
2023
, “
Film Cooling Effectiveness on Pressure Surface and Suction Surface of Turbine Guide Vane With Diffusion Slot Holes
,”
ASME J. Turbomach.
,
145
(
10
), p.
101007
.
40.
An
,
B.-T.
, and
Liu
,
J.-J.
,
2017
, “
Numerical Investigation on Diffusion Slot Hole With Various Cross-Sectional End Shapes
,”
ASME J. Heat Transfer
,
139
(
10
), p.
091703
.
41.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
42.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
43.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.
44.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.
45.
Li
,
C.
,
An
,
B.
, and
Liu
,
J.
,
2022
, “
Effect of Coolant Crossflow on Film Cooling Effectiveness of Diffusion Slot Hole With and Without Ribs
,”
ASME J. Turbomach.
,
144
(
9
), p.
091005
.
46.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
You do not currently have access to this content.