Abstract

The two-part publication deals with roughness investigations on in-service high-pressure compressor (HPC) blades, both in terms of measurements and simulations. In this article (Part I), an automated process for performing detailed surface roughness measurements of the blades has been developed. Specifically, a highly accurate Alicona sensor (20x lens; capable of capturing roughness values down to 0.1μm) was combined with a pick-and-place robotic arm, and the system was trained to conduct roughness measurements on all the different rotor blades of a 10-stage HPC. First, the Alicona measuring device is validated against a NanoFocus device of similar accuracy. Then, a detailed measurement of the roughness on the suction and pressure side of Rotor 2 is demonstrated, using a 100-point grid. This process is further accelerated by using a reduced number of measuring points. The location of those points has been determined by numerical optimization that aims at minimizing the error between a radial basis function (RBF)-based approximation model and the detailed measured roughness distribution. Finally, a summary of the roughness measurements through the entire HPC is given (rotors only; before and after cleaning of the blades at an ultrasonic bath) and the article ends with a discussion of the results.

References

1.
Goeing
,
J.
,
Seehausen
,
H.
,
Pak
,
V.
,
Lueck
,
S.
,
Seume
,
J. R.
, and
Friedrichs
,
J.
,
2020
, “
Influence of Combined Compressor and Turbine Deterioration on the Overall Performance of a Jet Engine Using RANS Simulation and Pseudo Bond Graph Approach
,”
J. Glob. Power Propuls. Soc.
,
4
, pp.
296
308
.
2.
Delvaux
,
G.
,
Toracchio
,
R.
,
Boufidi
,
E.
,
Croner
,
E.
, and
Fontaneto
,
F.
,
2022
, “
The Modelling of Roughness Effect on the Performance of a Controlled Diffusion Airfoil
,”
ASME Turbo Expo 2022
,
Rotterdam, Netherlands
,
June 13–17
.
3.
Back
,
S. C.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2012
, “
Effects of Reynolds Number and Surface Roughness Magnitude and Location on Compressor Cascade Performance
,”
ASME J. Turbomach.
,
134
(
5
), p.
051013
.
4.
Millsaps
,
K. T.
,
Baker
,
J.
, and
Patterson
,
J. S.
,
2004
, “
Detection and Localization of Fouling in a Gas Turbine Compressor From Aerothermodynamic Measurements
,”
ASME Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
.
5.
Sun
,
H.
,
Ma
,
J.
,
Wang
,
Z.
, and
Cao
,
L.
,
2019
, “
The Research on Compressor Performance Degradation Caused by Surface Roughness Enlargement Due to Corrosion in Marine Environments
,”
ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17—21
.
6.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
7.
Ghenaiet
,
A.
,
Elder
,
R. L.
, and
Tan
,
S. C.
,
2001
, “
Particles Trajectories Through an Axial Fan and Performance Degradation Due to Sand Ingestion
,”
ASME Turbo Expo 2001
,
New Orleans, LA
,
June 4–7
.
8.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
9.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
10.
Danzl
,
R.
,
Helmli
,
F.
, and
Scherer
,
S.
,
2011
, “
Focus Variation—A Robust Technology for High Resolution Optical 3D Surface Metrology
,”
J. Mech. Eng.
,
57
(
3
), pp.
245
256
.
11.
Leach
,
R. K.
,
2010
,
Fundamental Principles of Engineering Nanometrology
,
Elsevier, William Andrew
,
Oxford
.
12.
Taylor
,
R. P.
,
1990
, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
175
180
.
13.
Walton
,
K.
,
Blunt
,
L.
,
Fleming
,
L.
,
Goodhand
,
M.
, and
Lung
,
H.
,
2014
, “
Areal Parametric Characterisation of Ex-Service Compressor Blade Leading Edges
,”
Wear
,
321
(
2
), pp.
79
86
.
14.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
15.
Syverud
,
E.
, and
Bakken
,
L. E.
,
2006
, “
The Impact of Surface Roughness on Axial Compressor Performance Deterioration
,”
ASME Turbo Expo 2006
,
Barcelona, Spain
,
May 8–11
.
16.
Gilge
,
P.
,
Kellersmann
,
A.
,
Friedrichs
,
J.
, and
Seume
,
J. R.
,
2019
, “
Surface Roughness of Real Operationally Used Compressor Blade and Blisk
,”
Proc. Inst. Mech. Eng. G: J. Aerosp. Eng.
,
233
(
14
), pp.
5321
5330
.
17.
Klein
,
M.
,
Staudacher
,
S.
,
Abu-Taa
,
K.
, and
Schwengler
,
J.
,
2022
, “
Digital Service Twin to Assess Engine Deterioration and Remaining Part Life
,”
ASME Turbo Expo 2022
,
Rotterdam, Netherlands
,
June 13–17
.
18.
“Bruker Alicona.” https://www.alicona.com/en/home/, Accessed December 28, 2022.
19.
“Universal Robots.” https://www.universal-robots.com/, Accessed December 28, 2022.
20.
“Alicona InfiniteFocus-SensorR25.” https://www.alicona.com/en/products/if-sensorr25/, Accessed December 28, 2022.
21.
“Universal Robots UR3 e-Series Cobot.” https://www.universal-robots.com/products/ur3-robot/, Accessed December 28, 2022.
22.
“NanoFocus μ surf Custom.” https://www.nanofocus.com/products/usurf/usurf-custom/, Accessed December 28, 2022.
23.
Schlüter
,
L.
,
Voigt
,
M.
,
Mailach
,
R.
,
Schmidt
,
R.
, and
Becker
,
B.
,
2023
, “
Probabilistic CFD Analysis of a High-Pressure Compressor Under Consideration of Manufacturing and In-Service Variability
,”
ASME Turbo Expo 2023
,
Boston, MA
,
June 26–30
.
24.
“Python SciPy RBF.” https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Rbf.html, Accessed December 28, 2022.
You do not currently have access to this content.