Graphical Abstract Figure

Database of the 14 measured roughness geometries used for training the roughness function model

Graphical Abstract Figure

Database of the 14 measured roughness geometries used for training the roughness function model

Close modal

Abstract

The two-part publication deals with roughness investigations on in-service high-pressure compressor (HPC) blades, both in terms of measurements and simulations. In this paper (Part II), first, stripe measurements of surface roughness coming from the suction side of the blades are conducted, using a highly accurate Alicona measuring device (see Part I for details of the measurement approach). Then, these roughness distributions are used to construct the walls of zero-pressure-gradient, fully turbulent channel flow simulations. Body-fitted unstructured grids of up to 80 M nodes are generated, on which wall-resolved large eddy simulations (LES) as well as Reynolds-averaged Navier–Stokes (RANS) simulations with the k–ω shear stress transport (SST) turbulence model are performed. The computational fluid dynamics (CFD) setup is first validated on a smooth channel reference case against LES and direct numerical simulations (DNS) data from the relevant literature. In addition, the impact of Reynolds number on several rough channel flow simulations is explored, using two different setups at Reτ = 540 and Reτ = 880. Finally, after an identification of the most important roughness parameters (given the relatively limited database at hand), a new roughness function model is proposed, which would allow the prediction of the flow over a rough surface without the need of geometrically resolving the roughness scales.

References

1.
Jiménez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
173
196
.
2.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
3.
Joo
,
J.
,
Medic
,
G.
, and
Sharma
,
O.
,
2016
, “
Large-Eddy Simulation Investigation of Impact of Roughness on Flow in a Low-Pressure Turbine
,”
ASME Turbo Expo
, GT2016-57912.
4.
Malathi
,
A. S.
,
Nardini
,
M.
,
Vaid
,
A.
,
Vadlamani
,
N. R.
, and
Sandberg
,
R. D.
,
2023
, “
Profile Loss Reduction of High-Lift Turbine Blades With Rough and Ribbed Surfaces
,”
ASME J. Turbomach.
,
145
(
2
), p.
021001
.
5.
De Marchis
,
M.
,
Milici
,
B.
, and
Napoli
,
E.
,
2019
, “
Large Eddy Simulations on the Effect of the Irregular Roughness Shape on Turbulent Channel Flows
,”
Int. J. Heat Fluid Flow
,
80
, p.
108494
.
6.
Nikuradse
,
J.
,
1933
, “Strömungsgesetze in Rauhen Rohren,” Technical Report 361, VDI-Forschungsheft.
7.
Flack
,
K. A.
,
Schultz
,
M. P.
,
Barros
,
J. M.
, and
Kim
,
Y. C.
,
2016
, “
Skin-Friction Behavior in the Transitionally-Rough Regime
,”
Int. J. Heat Fluid Flow
,
61
, pp.
21
30
.
8.
Forooghi
,
P.
,
Stroh
,
A.
,
Magagnato
,
F.
,
Jakirlić
,
S.
, and
Frohnapfel
,
B.
,
2017
, “
Toward a Universal Roughness Correlation
,”
J. Fluids Eng.
,
139
(
12
), p.
121201
.
9.
Meynet
,
S.
,
Barge
,
A.
,
Moureau
,
V.
,
Balarac
,
G.
,
Lartigue
,
G.
, and
Hadjadj
,
A.
,
2023
, “
Roughness-Resolved Large-Eddy Simulation of Additive Manufacturing-Like Channel Flows
,”
ASME J. Turbomach.
,
145
(
8
), p.
081013
.
10.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Marsden
,
R.
,
2016
, “
The Limitations of Using ‘Ra’ to Describe Surface Roughness
,”
ASME J. Turbomach.
,
138
(
10
), p.
101003
.
11.
Jouybari
,
M. A.
,
Yuan
,
J.
,
Brereton
,
G. J.
, and
Murillo
,
M. S.
,
2021
, “
Data-Driven Prediction of the Equivalent Sand-Grain Height in Rough-Wall Turbulent Flows
,”
J. Fluid Mech.
,
912
, p.
A8
.
12.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civil Eng.
,
11
(
4
), pp.
133
156
.
13.
Thakkar
,
M.
,
Busse
,
A.
, and
Sandham
,
N. D.
,
2018
, “
Direct Numerical Simulation of Turbulent Channel Flow Over a Surrogate for Nikuradse-Type Roughness
,”
J. Fluid Mech.
,
837
, p.
R1
.
14.
De Marchis
,
M.
,
Saccone
,
D.
,
Milici
,
B.
, and
Napoli
,
E.
,
2020
, “
Large Eddy Simulations of Rough Turbulent Channel Flows Bounded by Irregular Roughness: Advances Toward a Universal Roughness Correlation
,”
Flow Turbul. Combust.
,
105
(
2
), pp.
627
648
.
15.
Wang
,
Z. J.
,
Chi
,
X. K.
,
Shih
,
T.
, and
Bons
,
J.
,
2004
, “
Direct Simulation of Surface Roughness Effects With a RANS and DES Approach on Viscous Adaptive Cartesian Grids
,”
34th AIAA Fluid Dynamics Conference and Exhibit 2004
, AIAA 2004-2420.
16.
Napoli
,
E.
,
Armenio
,
V.
, and
De Marchis
,
M.
,
2008
, “
The Effect of the Slope of Irregularly Distributed Roughness Elements on Turbulent Wall-Bounded Flow
,”
J. Fluid Mech.
,
613
, pp.
385
394
.
17.
ansa
,
1999
, https://www.beta-cae.com/ansa.htm, Accessed December 28, 2022.
18.
Lapworth
,
B. L.
,
2004
, “
HYDRA-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific & Engineering Computation (IC-SEC) 2004
,
Singapore
,
June 30–July 2
.
19.
Mihalyovics
,
J.
,
Christian
,
B.
,
Peitsch
,
D.
,
Vasilopoulos
,
I.
, and
Meyer
,
M.
,
2018
, “
Aerodynamic and Experimental Investigations on Optimized 3D Compressor Airfoils
,”
ASME Turbo Expo 2018
, GT2018-76826.
20.
Shahpar
,
S.
, and
Caloni
,
S.
,
2013
, “
Aerodynamic Optimization of High-Pressure Turbines for Lean-Burn Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
055001
.
21.
Moinier
,
P.
,
Müller
,
J. D.
, and
Giles
,
M. B.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.
22.
Misev
,
C.
,
2017
, “
Development and Optimization of an Implicit CFD Solver in Hydra
,”
Ph.D. thesis
,
University of Surrey
,
Surrey
.
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
24.
Hinterberger
,
C.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2008
, “
2D and 3D Turbulent Fluctuations in Open Channel Flow With Reτ = 590 Studied by Large Eddy Simulation
,”
Flow Turbul. Combust.
,
80
(
2
), pp.
225
253
.
25.
Prabhakar
,
A.
,
Goddard
,
C.
,
Amirante
,
D.
,
Reguly
,
I.
,
Gerstenberger
,
A.
,
Suhrmann
,
J. F.
,
Jarvis
,
S. A.
,
Lapworth
,
L.
, and
Mudalige
,
G. R.
,
2023
, “
Virtual Certification of Gas Turbine Engines—Visualizing the DLR Rig250 Compressor
,” Preprint Submitted to Parallel Computing.
26.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow up to Reτ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.
27.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.
28.
Rieth
,
M.
,
Proch
,
F.
,
Stein
,
O. T.
,
Pettit
,
M. W. A.
, and
Kempf
,
A. M.
,
2014
, “
Comparison of the Sigma and Smagorinsky LES Models for Grid Generated Turbulence and a Channel Flow
,”
Comput. Fluids
,
99
(
22
), pp.
172
181
.
29.
Davidson
,
L.
,
2007
, “
Using Isotropic Synthetic Fluctuations as Inlet Boundary Conditions for Unsteady Simulations
,”
Adv. Appl. Fluid Mech.
,
1
(
1
), pp.
1
35
.
30.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the ‘Law of the Wall’
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.
31.
Jackson
,
P. S.
,
1981
, “
On the Displacement Height in the Logarithmic Velocity Profile
,”
J. Fluid Mech.
,
111
(
1
), pp.
15
25
.
32.
ansys cfx
,
2003
, https://www.ansys.com/en-gb/products/fluids/ansys-cfx, Accessed December 28, 2022.
33.
Aupoix
,
B.
,
2007
, “
A General Strategy to Extend Turbulence Models to Rough Surfaces: Application to Smith’s k–L Model
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1245
1254
.
You do not currently have access to this content.