This paper describes a computationally simple method to isolate transient vibration from rotating components whose frequency is tightly linked to rotation and to modes of vibration. The results can be viewed as an enhancement of computed order tracking or amplitude demodulation of multiple crossing frequency terms. By measuring the response with an array of sensors, one can compute the relative, instantaneous phase between different sensors and thus obtain information about the spatial behavior of different components with different wavelengths, frequencies, and traveling directions. An array of sensors would thus exploit spatial information to separate different vibration modes and thus gain deeper insight into the dynamical behavior. The proposed method is suitable for whirling shafts and rotating disk-like structures. It is computationally simple and fast while providing better separation of components than single sensor based approaches, in particular when ordinary methods fail to separate close frequencies. It is demonstrated that through the exploitation of cyclic symmetry of rotating structures and the angular periodicity of the vibration modes, the spectral contents of different modes can be separated. Simulated and measured data demonstrate the merits of the proposed algorithm.

References

1.
Braun
,
S.
,
1986
,
Mechanical Signature Analysis: Theory and Applications
,
Academic
,
New York
.
2.
Judge
,
J.
,
Pierre
,
C.
, and
Mehmed
,
O.
,
2001
, “
Experimental Investigation of Mode Localization and Forced Response Amplitude Magnification for a Mistuned Bladed Disk
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
940
950
.10.1115/1.1377872
3.
Ewins
,
D.
,
1969
, “
The Effects of Detuning Upon the Forced Vibrations of Bladed Disks
,”
J. Sound Vib.
,
9
(
1
), pp.
65
79
.10.1016/0022-460X(69)90264-8
4.
Lee
,
C. W.
,
1991
, “
A Complex Modal Testing Theory for Rotating Machinery
,”
Mech. Syst. Signal Process.
,
5
(
2
), pp.
119
137
.10.1016/0888-3270(91)90019-2
5.
Han
,
Y. S.
, and
Lee
,
C. W.
,
1999
, “
Directional Wigner Distribution for Order Analysis in Rotating/Reciprocating Machines
,”
Mech. Syst. Signal Process.
,
13
(
5
), pp.
723
737
.10.1006/mssp.1998.1202
6.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
.
7.
Lee
,
C. W.
, and
Han
,
Y. S.
,
1998
, “
The Directional Wigner Distribution and Its Applications
,”
J. Sound Vib.
,
216
(
4
), pp.
585
600
.10.1006/jsvi.1998.1715
8.
Radcliffe
,
C.
, and
Mote
,
C.
, Jr
.,
1983
, “
Identification and Control of Rotating Disk Vibration
,”
ASME J. Dyn. Syst., Meas., Control
,
105
(
1
), pp.
39
43
.10.1115/1.3139726
9.
Fyfe
,
K.
, and
Munck
,
E.
,
1997
, “
Analysis of Computed Order Tracking
,”
Mech. Syst. Signal Process.
,
11
(
2
), pp.
187
205
.10.1006/mssp.1996.0056
10.
Potter
,
R.
,
1990
, “
A New Order Tracking Method for Rotating Machinery
,”
Sound Vib.
,
24
(
9
), pp.
30
34
.
11.
Vold
,
H.
, and
Leuridan
,
J.
,
1993
, “
High Resolution Order Tracking at Extreme Slew Rates, Using Kalman Tracking Filters
,”
SAE
Technical Paper 931288.10.4271/931288
12.
Chen
,
W. J.
, and
Gunter
,
E. J.
,
2005
,
Introduction to Dynamics of Rotor-Bearing Systems
,
Trafford
,
Bloomington, IN
.
13.
Dimarogonas
,
A. D.
, and
Paipetis
,
S. A.
,
1983
,
Analytical Methods in Rotor Dynamics
,
Elsevier
,
New York
.
14.
Gasch
,
R.
,
Nordmann
,
R.
, and
Pfützner
,
H.
,
2002
,
Rotordynamik
,
Springer
,
New York
.
15.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1998
,
Rotordynamics: Prediction in Engineering
,
Wiley
,
New York
.
16.
Muszyńska
,
A.
,
2005
,
Rotordynamics
,
CRC
,
Boca Raton, FL
.
17.
Vance
,
J. M.
,
Murphy
,
B.
, and
Zeidan
,
F.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
New York
.
18.
Randall
,
R.
,
2011
,
Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications
,
Wiley
,
New York
.
19.
Bucher
, I
.
,
Ewins
,
D.
,
Robb
,
D.
, and
Schmiechen
,
P.
,
1995
, “
Multi-Dimensional Directional Spectrograms and Campbell (ZMOD) Diagrams for Rotating Machinery
,”
Proceedings of the 1995 ASME Design Engineering Technical Conference Part C
, Boston, MA, October, Vol.
84
, pp.
1327
1336
.
20.
Cohen
,
L.
,
1995
,
Time-Frequency Analysis: Theory and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Schmiechen
,
P.
,
1998
, “
Travelling-Wave Speed Coincidence
,” Ph.D. thesis, Imperial College, London.
22.
Bucher
,
I.
,
2011
, “
Transforming and Separating Rotating Disk Vibrations Using a Sensor Array
,”
J. Sound. Vib.
,
330
(
6
), pp.
1244
1264
.10.1016/j.jsv.2010.09.033
23.
Irretier
,
H.
, and
Reuter
,
F.
,
1997
, “
Frequency Response Functions of Rotating Periodically Time-Varying Systems
,”
Proceedings of the 15th International Modal Analysis Conference (IMAC XV)
, pp.
350
356
.
24.
Ahn
,
T.
, and
Mote
,
C.
,
1998
, “
Mode Identification of a Rotating Disk
,”
Exp. Mech.
,
38
(
4
), pp.
250
254
.10.1007/BF02410386
25.
Bucher
, I
.
,
Schmiechen
,
P.
,
Robb
,
D. A.
, and
Ewins
,
D. J.
,
1994
, “
Laser-Based Measurement System for Measuring the Vibration on Rotating Discs
,”
Proceedings SPIE 2358, 1st International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, Ancona, Italy, October 3–5
, pp.
398
408
.
26.
Di Maio
,
D.
, and
Ewins
,
D. J.
,
2011
, “
Continuous Scan, a Method for Performing Modal Testing Using Meaningful Measurement Parameters—Part I
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3027
3042
.10.1016/j.ymssp.2011.05.018
27.
Stanbridge
,
A.
,
Martarelli
,
M.
, and
Ewins
,
D.
,
2001
, “
Rotating Disc Vibration Analysis With a Circular-Scanning LDV
,”
Proceedings of the 19th International Modal Analysis Conference (IMAC XIX), Orlando, FL, February 5–8, SEM
, pp.
1211
1217
.
28.
Bucher
,
I.
,
2004
, “
Estimating the Ratio Between Travelling and Standing Vibration Waves Under Non-Stationary Conditions
,”
J. Sound Vib.
,
270
(
1–2
), pp.
341
359
.10.1016/S0022-460X(03)00539-X
29.
Potter
,
R.
, and
Gribler
,
M.
,
1989
, “
Computed Order Tracking Obsoletes Older Methods
,”
SAE
Technical Paper No. 891131.10.4271/891131
30.
Shin
,
K.
, and
Hammond
,
J. K.
,
2008
,
Fundamentals of Signal Processing for Sound and Vibration Engineers
,
Wiley
,
New York
.
31.
Gabai
,
R.
, and
Bucher
, I
.
,
2009
, “
Excitation and Sensing of Multiple Vibrating Traveling Waves in One-Dimensional Structures
,”
J. Sound Vib.
,
319
(
1–2
), pp.
406
425
.10.1016/j.jsv.2008.06.013
32.
Minikes
,
A.
,
Gabay
,
R.
,
Bucher
, I
.
, and
Feldman
,
M.
,
2005
, “
On the Sensing and Tuning of Progressive Structural Vibration Waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
9
), pp.
1565
1576
.10.1109/TUFFC.2005.1516029
33.
Vold
,
H.
,
Herlufsen
,
H.
,
Mains
,
M.
, and
Corwin-Renner
,
D.
,
1997
, “
Multi Axle Order Tracking With the Vold-Kalman Tracking Filter
,”
Sound Vib.
,
31
(
5
), pp.
30
35
.
34.
Boashash
,
B.
,
1992
, “
Estimating and Interpreting the Instantaneous Frequency of a Signal. 1. Fundamentals
,”
Proc. IEEE
,
80
(
4
), pp.
520
538
.10.1109/5.135376
35.
Schmiechen
,
P.
, and
Ingenieure
, V
. D.
,
1998
,
Travelling-Wave Speed Coincidence
,
VDI Verlag
,
Berlin
.
36.
Bucher
, I
.
, and
Ewins
,
D.
,
1997
, “
Multidimensional Decomposition of Time-Varying Vibration Response Signals In Rotating Machinery
,”
Mech. Syst. Signal Process.
,
11
(
4
), pp.
577
601
.10.1006/mssp.1997.0092
37.
Proakis
J. G.
,
2001
,
Digital Communications
,
McGraw-Hill
,
New York
.
38.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
39.
Kim
,
M.
,
Moon
,
J.
, and
Wickert
,
J.
,
2000
, “
Spatial Modulation of Repeated Vibration Modes in Rotationally Periodic Structures
,”
ASME J. Vibr. Acoust.
,
122
, pp.
62
68
.10.1115/1.568443
40.
Ewins
,
D.
, 1975, “
Vibration Modes of Mistuned Bladed Disks
,”
Proceedings of the ASME Gas Turbine Conference and Products Show, Houston, TX, March 2–6
.
41.
Lamb
,
H.
, and
Southwell
,
R.
,
1921
, “
The Vibrations of a Spinning Disk
,”
Proc. R. Soc. London, Ser. A
,
99
(
699
), pp.
272
280
.10.1098/rspa.1921.0041
42.
Boashash
,
B.
,
1992
, “
Estimating and Interpreting the Instantaneous Frequency of a Signal. 2. Algorithms and Applications
,”
Proc. IEEE
,
80
(
4
), pp.
540
568
.10.1109/5.135378
43.
Honda
,
Y.
,
Matsuhisa
,
H.
, and
Sato
,
S.
,
1985
, “
Modal Response of a Disk to a Moving Concentrated Harmonic Force
,”
J. Sound Vib.
,
102
(
4
), pp.
457
472
.10.1016/S0022-460X(85)80107-3
You do not currently have access to this content.